
vi AD-A2 5 8 920.

AFlT/GC;C/ENG/92-1I

EXAMINING A LAYERED APPROACH TO
FUNCTION AND DESIGN REPRESENTATION
FOR REUSABLE SOFTWARE COMPONENTS

THESIS

Paul Dwight Siebels

Captain, USAF

AFIT/GCE/ENG/92-11 L ECTE

EI

;JAN 07,19193

cc

Approved for public release; distribution unlimited

0 1

I~93 1 04 123

AFIT/GCE/ENG/92-11

EXAMINING A LAYERED APPROACH TO FUNCTION AND

DESIGN REPRESENTATION FOR REUSABLE SOFTWARE

COMPONENTS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Engineering)

Paul Dwight Siebels, B.S.

Captain, USAF

December, 1992

Approved for public release; distribution unlimited

Preface

The purpose of this work was to investigate how software reuse could be im-

proved with particular attention paid to the user interface. Several sources have

identified problems directly and indirectly related to how the user was presented

reusable software component information. These problems have impacted how suc-

cessful the reuse of that software would be. This project investigated ways to better

present the software to potential re-users.

I began this effort with only a vague idea of where it was headed and even

less of an idea of where it would end up. I owe a great deal to the suggestions and

direction provided by my faculty advisor, Capt James Cardow and hope the work

has helped answer some of the questions that we both had. I especially owe thanks

and a great deal more to my loving wife, Constance, who didn't always understand

why I was continually in front of the computer but who put up with me anyway.

Without her support and acceptance this would have been a great deal harder to

complete. Finally I thank the Lord for the patience and strength to complete this

at the times when I felt like I didn't know what to do next.

Paul Dwight Siebels

Acoession For

OTIS GRA&I
DTIC TAB 0
Unannounced 0

Jus Lf1 t ion-------

T i7'C QU!JJ .L ,TED L
Di stribution/

AvPilabllitY Codeff

Avail and/or

Dist Special
i1 A e

Table of Contents

Page

Preface ii

List of Figures ... vii

Abstract ix

1. Introduction 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Current Knowledge 2

1.4 Research Questions 5

1.5 Methodology Overview 5

1.6 Thesis Overview 6

II. Literature Review 7

2.1 Representing Software Function 7

2.1.1 Textual Methods 7

2.1.2 Graphical Methods 14

2.2 Representing Software Design 17

2.2.1 Textual Methods 17

2.2.2 Graphical Methods 17

2.3 A Wider View 21

2.3.1 Hypertext 21

2.3.2 A Metamodel 23

2.4 Summary 25

iii

Page

III. M ethodology 26

3.1 Evaluation Criteria 26

3.1.1 Selecting Specific Criteria 27

3.1.2 Developing Evaluation Guidelines 29

3.2 Representation Evaluation 34

3.3 Develop Prototype 35

3.3.1 Select Components for Prototype Library 35

3.3.2 Prepare Functional and Design Representations of

Components 37

3.3.3 Select Interface Technique 37

3.3.4 Design and Implement Interface 38

3.4 Develop Questionnaire 39

3.5 Evaluate Prototype 40

3.6 Analyze Results 40

IV. Results 41

4.1 Representation Evaluation Results 41

4.2 Research Question 1 Results 45

4.3 Research Question 2 Results 46

4.4 Research Question 3 Results 46

4.5 Research Question 4 Results 47

4.6 Prototype Reusable Software Library 48

4.6.1 Prototype Development 48

4.6.2 Prototype Evaluation 49

V. Conclusions and Recommendations 52

5.1 Representation Evaluation Conclusions 52

5.2 Research Question 1 Conclusions 52

iv

Page

5.3 Research Question 2 Conclusions 53

5.4 Research Question 3 Conclusions 55

5.5 Research Question 4 Conclusions 56

5.6 Prototype Conclusions 57

5.7 Recommendations for Further Work 58

Appendix A. Rationale for Representation Evaluations 61

A.1 Rationale for Functional Layer Evaluations 61

A.1.1 Evaluation of Textual Descriptions 61

A.1.2 Evaluation of Keywords/Facets 61

A.1.3 Evaluation of Frames 62

A.1.4 Evaluation of Forms 63

A.1.5 Evaluation of Formal/Logical Approaches 63

A.1.6 Evaluation of Data Flow Diagrams 63

A.1.7 Evaluation of Semantic Nets/E-R Diagrams . . . 64

A.1.8 Evaluation of PDL 64

A.1.9 Evaluation of Structure Charts 65

A.1.10 Evaluation of Plan Calculus 65

A.1.11 Evaluation of Schemas 66

A.2 Rationale for Design Layer Evaluations 66

A.2.1 Evaluation of Textual Descriptions 67

A.2.2 Evaluation of Keywords/Facets 67

A.2.3 Evaluation of Frames 67

A.2.4 Evaluation of Forms 68

A.2.5 Evaluation of Formal/Logical Approaches 68

A.2.6 Evaluation of Data Flow Diagrams 68

A.2.7 Evaluation of Semantic Nets/E-R, Diagrams . . . 68

A.2.8 Evaluation of PDL 69

v

Page

A.2.9 Evaluation of Structure Charts 69

A.2.10 Evaluation of Plan Calculus 69

A.2.11 Evaluation of Schemas 69

A.3 Rationale for Hypertext and Metamodel Evaluations . . . 70

A.3.1 Evaluation of Hypertext 70

A.3.2 Evaluation of a Meta-model 70

Appendix B. Tutorial for the Prototype Reusable Software Library . . 72

B.1 Overview 72

B.2 Demonstration 73

B.2.1 Helpful Information 73

B.2.2 Finding and Viewing a Component 75

B.2.3 Viewing Several Components 76

B.2.4 Viewing the Design Layer 77

B.2.5 Viewing Other Component Information Layers . . 78

B.2.6 Narrowing the List of Components 79

Appendix C. Example SUIT Figures 81

Appendix D. Questionnaire 90

Appendix E. Prototype Questionnaire Responses 98

E.1 Background Questions 98

E.2 Prototype Questions 99

Bibliography 101

Vita 104

vi

List of Figures

Figure Page

1. Example List of Facets (31:10) 10

2. Example Frame Representation (16:1432) 11

3. Example Forms (27:172-173) 12

4. Example Formal Representation 13

5. Example Data Flow Diagram (DFD) 15

6. Example Semantic Network (17:309) 16

7. Example of Program Design Language (PDL) (8:486) 18

8. Example of Structure Chart (21:130) 19

9. Example Plan Calculus (34:326) 20

10. Example Schema Diagram (26:358) 22

11. Example Hypertext System (13:18) 24

12. Example Meta-model (23:477) 25

13. Examples of Language, Methodology and Application Constructs and

Terms 31

14. Types and Elements of Reusable Software Components 33

15. Numeric Values of Evaluation Ratings 35

16. Results of Component Set Evaluation 37

17. Results of Interface Development Toolkit Evaluation 39

18. Functional Layer Representation Evaluation Results 42

19. Design Layer Representation Evaluation Results 43

20. Hypertext and Metarnodel Evaluation Results 44

21. Numeric Scores of Representation Technique Evaluation 45

22. Main Prototype Window 82

23. Search Criteria Selection Dialog 83

vii

Figure Page

24. Search Results/Component Selection Dialog 84

25. Revise Previous Search Criteria Dialog 85

26. Software Component Functionality Representation 86

27. Software Component Design Representation (PDL) 87

2S. Software Component Design Representation (Text) 88

29. Help Information 89

Viii

AFIT/GCE/ENG/92-1 1

Abstract

This effort examined ways to improve the effectiveness of reusable software

libraries. The main area of investigation was in improving the user interface by find-

ing better ways to present the software components to potential re-users. The first

aspect which was considered was in finding an effective representation for reusable

software components. A set of criteria was developed for evaluating tile effectiveness

of software representations. The criteria consisted of generality, expressiveness, un-

derstandability, consistency, and resolution. The second aspect which was considered

was how to present the software component information to the user to facilitate find-

ing the appropriate component for reuse. A representation framework was examined

which advocated presenting reuse information in four layers: component finctional-

ity, design information, quality metrics and source code. The first two layers were

chosen for further study. Several current representations for software function and

design were evaluated using the criteria listed above. These techniques included

both textual and graphical approaches. The highest rated representations were then

incorporated into a prototype interface for examination by a group of software en-

gineers. Feedback was collected and summarized in a set of recommendations and

conclusions.

ix

EXAMINING A LAYERED APPROACH TO FUNCTION AND

DESIGN REPRESENTATION FOR REUSABLE SOFTWARE

COMPONENTS

I. Introduction

The software crisis has been around for many years, and though many solutions

have been investigated, the software crisis seems as much a problem now as it was

when it was first described. The solutions have included approaches such as very

high level languages, automatic programming, visual programming, object-oriented

programming, software reuse, program proving, artificial intelligence and knowledge-

based approaches, and many others (6, 15). Each of these approaches has potential

for helping reduce the software crisis, but as Brooks asserted, none of them will be

a "silver bullet" (6:10). The reusable software library concept is one of the oldest.

approaches to the software problem. Prieto-Diaz pointed out that McIlroy proposed a

software components catalog in 1967 (31:6). Establishing a reusable software library,

however, does not by itself solve the problem. Several important aspects of a reusable

software library must be addressed, including content, representation, granularity,

and indexing (2:9). This thesis examined or" aspect of reusable software libraries:

representing the reusable software component.

1.1 Background

While software reuse has been recognized for a long time as a desirable activity,

it has never fully realized its potential for increasing software productivity and quality

1

(3:3). One reason for the lack of widespread, successful software reuse is that current

reusable software libraries do not adequately present the information necessary for

reuse (18:251). A software developer will not reuse software components if the effort

to find and adapt the components is more than the effort to create the components

from scratch (31:6). The results are that the developer is often frustrated with using

the library and dissatisfied with the components found, if any. Thus, the library is

not widely used and the)romise of software reuse fails to materialize.

1.2 Problen Statcment

Current reusable software libraries do not effectively present detailed informa-

tion associated with reusable software components. Software function and software

design specifically are not presented in a way that is beneficial to someone using the

library.

1.3 Current Knowledge

Biggerstaff and Richter have identified four activities that reusable software

libraries must support: locating components, understanding components, adapting

components, and composing components (3:5). Understanding a component is nec-

essary since someone wishing to reuse th• component must understand how the

component works to use it properly (3:5). This understanding comes in a large part

from the representation of the component that the user sees in the library (17:303).

Representations for reusable software components can be broken down into three

levels: presentation, representation, and implementation (17:303). The presentation

of a reusable software component is what the user actually sees. The representation

of a reusable software component is how it is logically modeled. The implementation

of a reusable software component is how it is physically retained. (17:303) The first

two levels of representation were the focus of this thesis.

2

One issue for reusable software libraries is deciding what should be included in

the library as a reusable component. Arango and Prieto-Diaz have pointed out that

It. is difficult to identify what information will make the best type of reusable com-

ponent (2:9). Frakes and Gandel, among others, have stated that any product devel-

oped during the software lifecycle is a candidate for reuse. This would include such

objects as operational concepts, functional requirements, design information, source

code, testing products, maintenance products, and user documentation. (17:302)

Caldiera and Basili contend that all these objects should be reused together. More

than just the code must be reused since all the objects are related and need to be

defined in their entire context. (9:61) Design particularly is an area that has much

potential for reuse beyond the design of the software component itself. Several arti-

cles have stressed that many parts of the design process should be retained (1, 14).

Conklin states that information such as design decisions, alternatives, assumptions,

and rationale are important for understanding the software system (14:533).

Given so many different types of reusable software components, the question

is how are the components presented to someone using a software library. One ap-

proach that has been proposed is to use hypertext or hypermedia systems to integrate

the various types of reusable component information and maintain relationships be-

tween them (3, 36). Another approach is to arrange the component. information in

tiers (10). The components would be presented in four layers: component function-

ality, design information, quality attributes, and source code (10:10-12). One of the

concepts behind the layered presentation is showing the component information at

various levels of detail for many similar components to allow comparison between the

components. This is similar to the way common electronic hardware is presented in

a Transistor-Transistor Logic (TTL) data book. (11) This layered approach fosters

reuse by providing proven, specific components to be combined into larger, more

general functions in the same way common TTL components are combined. This

3

approach has the advantage of retaining the context for the components as advocated

by Caldiera and Basili.

Two of the four layers mentioned above were the subject of this work: soft-

ware function and software design. Software function and design representations fall

in two general categories, textual and graphical methods. Textual descriptions of

software function were developed along several different approaches. Some example

approaches include:

1. Text Descriptions (19)

2. Keywords and Facets (7, 31)

3. Frames and Forms (15, 27)

4. Formal and Logical Approaches (20)

The graphical approaches to describing software function that have been proposed

include:

1. Data Flow Diagrams (37)

2. Semantic Nets and Entity Relationship Diagrams (16)

Software component design has been presented in many cases by extensions to the

techniques used for software function presentation. One additional textual method

is program design language (32). Other graphical methods include:

1. Structure Charts (37)

2. Plan Calculus (34)

3. Schemas (26)

Finally, some techniques are at a higher level of abstraction or take on a wider view

of representation. Two such techniques are:

1. Hypertext (13)

2. A Metamodel (23)

These techniques will be detailed in Chapter II.

4

1.4 R~search Questions

Several questions exist in the area. of software reuse and specifically in the area

of software component representation. For the two layers discussed above, software

functional representation and design representation, the following questions will be

addressed by this thesis.

1. How is software functionality currently represented?

2. How can software functionality be presented to a user?

3. \What methods are effective in representing reusable software component design
and related design information?

4. How can software designs and design information be presented to a user?

1.5 Mcthodology Overview

The first step in the process to answer the research questions was to set up

the evaluation criteria that would be used to compare various software function and

design representations. As Karat emphasized, the evaluation criteria or objectives

are a necessary first step since without them the evaluation process would be very

difficult and possibly useless (24:892). The next step was to examine the current

software function and design representations and record how well the representations

met the various criteria. The third step was to choose the two or three representations

that were the closest match to the evaluation criteria and incorporate them into a

prototype system. The next step was to produce a set of questions concerning the

prototype representations to determine how effective the representations were. These

questions were answered by a group of users after working with the prototype. The

advantagcs of using a questionnaire were ease of use, low cost, applicability, and

suitability. The questionnaire was applicable and suitable since it could be used any

time clear questions could be formed, and it has been widely used in experimental

5

work (24:894,896). Finally, after the questionnaire was completed, the answers were

analyzed to determine-if the representations were effective or if some changes in using

the representations for a reusable software library could be suggested.

1.6 Thesis Overview

This chapter has introduced the issue of software component representation

for reusable software libraries. Chapter II will continue with a more detailed look at

how software function and software design are represented. Various representation

techniques will be examined with their associated benefits and limitations. Chapter

III will discuss the methods that were followed in developing the prototype. Chapter

IV will present the results of the work on developing the prototype. Chapter V sum-

marizes with some conclusions that were drawn from the work and recommendations

for further investigation.

6

II. Literature Review

Representing reusable software is one of the difficulties that has contributed to

the low percentage of software reuse (17:302). The following sections of this chapter

present examples of the work that has been published that addresses how software

is represented. The first section is about representing software function. The second

section is about representing software design. The software function and design

representations fall in two general categories, textual and graphical methods. These

first two sections include discussions on the textual and graphical methods available.

The third section covers two representation techniques, hypertext and a metamodel,

which present a wider view than the typical representations.

2.1 Representing Software Function

Representing the function or purpose of software has been a task that has

been around as long as software itself. Originally, the representation may have

been just a short description written by the programmer to remember what the

code did. Then subroutine libraries appeared and usually included some written

documentation describing what the subroutines did. Now, reusable software libraries

have been developed. Representing the function of the reusable software component

is a key factor in the effectiveness of the library (19:147). The following subsections

on textual and graphical methods describe various approaches to representing the

function of software. In these discussions, software requirements are considered to

specify software function.

2.1.1 Textual Methods Textual descriptions of software function were devel-

oped along several different approaches. Four example approaches are discussed next

describing some work that was done using the various formats.

7

2.1.1.1 Text Descriptions Simple text descriptions always have been

used to describe the function of software. Comments in the source code were one of

the first methods programmers learned in introductory programming classes on how

to describe software. The comments described tlie purpose of the overall code and the

various parts of the code. The comments, though, were usually informal and often

inconsistent. Some work has been done in making comments more effective. Frakes

and Nejmeh proposed standardized headers for software components to present a

description of the function of the component as well as other useful information

(19:147). The types of information recommended for the header were the name of the

component, author, creation date, a short abstract, a longer description, keywords,

size, complexity, performance, inspection data, testing data, and much more. Part

of the reasoning for such a standardized header was to help ensure the quality of

the components in a software library. (19:148) The header was then used as a basis

for the indexing scheme of a library system by automatically extracting important

words from the header for indexing use. One problem the authors pointed out with

their approach was that the syntactic and semantic information about relationships

between the key words was not retained. (17:308)

2.1.1.2 Keywords and Facets A similar approach to a text description

involved using one or more keywords to define the software component. This ap-

proach was particularly useful as part of the search algorithm for the software library.

One library system that used this approach was the Reusable Software Library (RSL)

(7). RSL used specially labeled comments to document particular attributes of the

software component. One of the attributes was a hierarchical category code that

described the functionality of the component. This category code was used as part

of the classification strategy of the library. In addition to the category code, another

attribute defined by RSL consisted of up to five descriptive keywords to further

8

define the functionality of the component. These keywords were also used in the

classification strategy but, were not in any hierarchy. (7:132)

Another keyword approach was advocated by Prieto-Diaz. This approach to

defining a software component used specific keywords to define several facets of

the software compotnent. Each facet was an aspect or dimension of a particular

domain (31:8). In the software domain, component functionality was represented

by the function, object, and medium facets. The function facet was the action that

the component performed, the object facet was the receiver of the action, and the

medium facet. was the location of the action. System type, functional area, and

setting were three additional facets that defined the environment that the software

component was designed to operate in. (31:10) Prieto-Diaz reported that a library

system using the faceted approach was used successfully at GTE Data Services.

Initial indications showed a 14% reuse factor with an estimated savings of $1.5

million. (30:94) Another library using the faceted approach was also started with

similar high expectations (30:96). Figure 1 shows the six facets proposed by Prieto-

Diaz with a partial listing of keywords for each facet.

The keyword and faceted approaches were not a perfect answer to the rep-

resentation issue. One problem was that the approaches depend on finding one or

more keywords that distinctly defined the function. When the keywords were found,

they still had the drawback pointed out by Devanbu and others that the semantics of

the keywords were not available for searching or retrieving the software components.

The search and retrieval algorithms could not "in any way infer the 'meaning' of the

special set of keywords used in the query" (15:38). The faceted approach was more

accommodating for the usual search, modify, repeat retrieval cycle than the simple

keyword approach, but it was weak in that it could not represent any constraints

between the keywords (15:38).

9

Function Object Medium System Area Setting

add arguments array assembler accts payable advertising
append arrays buffer compiler auditing association
close blanks cards DB mgmt billing auto repair
compare buffers disk evaluator bookkeeping barbershop

create characters file interpreter budgeting car dealer
decode digits line line editor CAD cemetary
deleted files list network cost control circulation
divide functions printer retreiver DB analysis cleaning
expand integers stack scheduler DB design clothing

Figure 1. Example List of Facets (31:10)

2.1.1.3 Frames and Forms Frames were an object-based approach to

representing software. "Frames are data structures, composed of slots and fillers,

used for knowledge representation" (17:310). The frame itself represented a class

of objects, the slots were the attributes of the objects, and the fillers were used to

define a specific object (15:40). Devanbu and others used a frame-based approach

called LaSSIE to implement a library system that presented functional, architec-

tural, feature, and code views of the components in the system (15). The frame

based approach afforded two advantages over other approaches. The first advantage

was that it was good at describing complex relations between objects that had a

hierarchical structure. The second advantage was that constraints on or between

attributes of the object were expressed by putting limitations on the fillers. (15:40)

A simple example frame is shown in Figure 2.

10

cycle FRAME

SPECIALIZATION-OF: moving-means FRAME WITH
number-of-motors = 0

number-of-wheels: IN {1, 21

DEFAULT VALUE 2
number-of-seats: IN {1, 2}

DEFAULT VALUE 1
owner: INSTANCE-OF person FRAME

Figure 2. Example Frame Representation (16:1432)

Matsumoto reported on work he had done on representing reusable software

using forms (27). The forms presented the software at four levels of abstraction.

These levels were requirements, design, program, and source code. (27:160) The

requirements level specified the relationships and constraints between external ob-

jects and the software. The design level included the data structures, data flows,

functions, and control flows. The program level presented the external design of

the software modules, and the source code level presented the internal design of the

modules. (27:160,164,167) The form at each level consisted of a structured descrip-

tion of the information at that level using an Ada-like design language. The forms

included descriptions of elements that could be customized for different applications

with acceptable ranges of values for the elements. Finally, the forms included traces

between the requirements, design, programs, and source code. (27:184) Figure 3

shows examples of the structure of the first three levels of forms.

2.1.1.4 Formal and Logical Approaches In the formal or logical ap-

proaches, information was represented b3 formulas and logical expressions. One

example of this type of approach was a language called Ted described by Franke

(20). Ted was a formal language that was designed specifically to be able to describe

11

Form(l) - - requirement level:
object type: EXTERNAL-ENTITY, INTERNALENTITY,
PROCESS, INPUT-INTERFACE, OUTPUTINTERFACE,
DATA, DATA-SET, EVENT;
relationship type: with, trigger/triggered-by, use/used-by,
comprise/comprised-in, acknowledge/acknowledged-by;

Form(2) - - design level:
object type: FUNCTION, INTERFACE-FUNCTION, DATA,

FILE, SIGNAL;
relationship type: with, activate/activated-by, call/called.by,
converse/conversed-by;

Form(3) - - program level:
object type: PACKAGE, SUBPROGRAM, TASK, PROCEDURE,
FUNCTION, DATA;
relationship type: with, invoke/invoked-by, call/called-by,

cause/accept;

Figure 3. Example Forms (27:172-173)

12

the purpose of a software component. It communicated the purpose by describing

actions that were prevented, enforced, or conditionally introduced (20:41-). The ad-

vantage to using a formal approach was that it had well defined semantics and had

available an established set of inference rules (34:320). A problem with the formal

approach was that it could be difficult to comprehend the structure of large numbers

of formal or logical expressions (16:1432). An example of a representation using the

formal language Z (22) is shown in Figure 4.

to-upper

Char?: character
Result!: character

[(Char? 0 letters) =,. (Result! = Char?)] A
[(Char? E letters) => (Result! = uppercase(Char?))]

s is-match

Stringl?: string
String2?: string
Match!: boolean

[(IStringl?[# [String2?1) => (Match! = FALSE)] A

[([String1?[= [String2?[) =>
[Vi[(1 < i < IStringl?[) A

(to-upper(Stringl?[iI) = to-upper(String2?[i]))] =>

(Match! = TRUE)]]

Figure 4. Example Formal Representation

13

2.1.2 Graphical Methods Graphical methods were also developed to represent

the function of software components. While the earliest graphical representations

were originally created on paper, the graphics capabilities of computers have enabled

tools to be developed to automate much the work. Some examples of the graphical

methods are presented next.

2.1.2.1 Data Flow Diagrams Data flow diagrams (DFDs) were used as

part of the technique of Structured Analysis (SA) as described by Yourdon (37).

DFDs fell into the category of "classical design techniques," with the similar ap-

proaches of Hierarchical Input Output (HIPO), Warnier-Orr and Jackson Develop-

ment Methods (3.5:10). The DFDs showed how data moved into and out of the

system components and what processing was done on the data. DFDs and the other

classical methods were good at encouraging communication between people and en-

hancing understanding of the system components themselves (35:10). The problem

with using SA or any other classical method as a representation for software function

was that it was not effective since

it does not have a semantic basis for clearly denoting or explaining, either
to man or machine, the meaning of ideas and concepts represented within
it oi to mechanically communicate the rationale behind the choices and
intended interpretation of a diagram. (35:23)

An example DFD is shown in Figure 5.

2.1.2.2 Semantic Net and E-R Diagrams Semantic nets and entity-

relationship (E-R) diagrams both used a graph-based approach to software func-

tional representation where the nodes of the graph represented objects or concepts

and the links corresponded to relationships between the nodes (16:1432). The advan-

tages to a semantic net representation included being easy to represent information

(17:309) and providing easy traversal of the information (16:1432). A problem with

14

THESIS DEVELOPMENT

Current

Research Pefr

Persona TopiteratuMor

Persnal opicMor Information

Preferences

Sponsor Prsn Final._. h'~

InptgCooe Thsi TheseDiaFlwsigrm(DD

Thesis

semantic nets was that there were no common semantics among various implemen-

tationis (16:1432). This contributed to the difficulty of not being able to do any

reasoniing about the information represented (17:309). Dubois and others proposed

using a combination of semantic nets and logical expressions for use in requirements

representation (16:1436). The goal of this approach was to combine the advantages

and overcome the disadvantages of both methods (16:1436). This representation

adopted a world-oriented requirements view. This view included the expected be-

havior of the software component, the interaction requirements between the software

and its environment, and the requirements or assumptions about the environment

itself. (16:1431) An example of a simple semantic net is shown in Figure 6.

my-system bubblesort

implementation faster than

used in• • AKO quicksort

written by bubblex ocK

language -,A

Joe Bubble C agrtr

Figure 6. Example Semantic Network (17:309)

16

2.2 Representing Software Design

The representations for software design in many cases were the same as the

representations for software function only extended to a more detailed level. Some

approaches that were used for both software function and design representation in-

cluded text descriptions, frames and forms, formal and logical expressions, data flow

diagrams, and semantic nets. Beyond these methods, some representations were

more oriented to just software design. The following sections on textual and graph-

ical methods describe these additional approaches.

2.2.1 Textual Methods One of the main textual representations of design be-

vond those already discussed was program design language (PDL), also known as

structured English. A PDL was simply a description of the design using natural

language text embedded in structures such as loops or conditional statements. The

use of Ada as a design language has been promoted for several years (32). An exam-

ple of using a PDL was discussed earlier in the description of the work with forms

done by Matsumoto. In the forms, Ada was used as the design language because

the implementation language was going to be Ada and using a different design lan-

guage would have added additional cost without adding any benefit (27:184). Some

advantages advocated for a PDL were that they were easier to create, revise, and

understand for a human's perspective (8:485). A generic PDL example is shown in

Figure 7.

2.2.2 Graphical Methods Several additional graphical techniques were avail-

able for representing software designs. Some techniques have been around for several

years, while others were recent work. The following three methods are examples of

the work in this area.

17

SORT (Table, Size-ofTable)

if Size-ofTable > 1
do until no items were interchanged

do for each pair of items in table (1-2, 2-3, etc)
if first item of pair > second item of pair

interchange the two items
end if

end do
end do

end if

Figure 7. Example of Program Design Language (PDL) (8:486)

2.2.2.1 Structure Charts Structure charts were a graphical design rep-

resentation technique that presented software as a hierarchical organization of lower

level components (37:417). The structure chart, as its name implies, showed the

structure of the software, including the data flow, control flow, repetition, and con-

ditional module invocation. The design goals for using structure charts were high

quality, error free software. These goals were accomplished by following several

design guidelines, such as maximizing intramodule cohesion, minimizing intermod-

ule coupling, and maintaining a reasonable module size. (37:421-422) An example

structure chart is shown in Figure 8.

2.2.2.2 Plan Calculus Rich and Waters reported on a representation

technique called Plan Calculus that represented reusable components as plans (34).

Each plan had three parts: the algorithmic portion represented by plan diagrams, the

non-algorithmic aspects captured by logical annotations, and program transforma-

tions documented by overlays (34:323-325). The plan diagrams showed the compu-

tations, data flows, and control flows using hierarchical data flow schemas (34:323).

18

PRESENT BEST SOLUTION

KEY:

()--o-= Data
Produce

F ControlBest Solution Flag

Sgood solution solution
input,

Get Good Compute Best Put Out
Input Solution Solution

goodw sgouo \d

input raw fa soluti formatted
inutformatted output
a~p output

Read Edit Format Display
Input Input Output Output

Figure 8. Example of Structure Chart (21:130)

19

The annotations on the plan diagrams captured the non-algorithmic aspects of a

component, such as preconditions, post.conditions, constraints, and dependencies.

These aspects were represented by predicate calculus assertions. (34:324) The trans-

formations, documented by overlays on the plan diagrams, simply were mappings

between corresponding roles or portions of two similar plans (34:325). The advan-

tages expected for using Plan Calculus as a component representation included high

expressiveness, language independence, semantic soundness, and machine process-

ability (34:327). An example of a plan calculus is shown in Figure 9.

EXAMPLE OF AN OVERLAY
I--.......................

~I~:J---------------------------------- :inL
C I S

-I

done 1 : tetdone testl

I S I

S'.. I input

continuation: accumlat

Reverse - accum. -a

I mt-- ---- 4 - * new:

old: f - -----I II I
add: accumulate - ". ... - - - - c : continuation:

scIterative - accumn.*- -! -........
i :"

fail-input nail-input:¥ • • inputcceed-scced

ionFpip

ýeixi.t o in outut a exit:* ion ou tpu

o I-I I _--Ioupta----------------- 4------------ ----------- -----------i upt
Reverse - accumulation Iterative - accumulation

Figure 9. Example Plan Calculus (34:326)

20

2.2.2.3 Schemas Lubars and Harandi reported on IDeA (Intelligent De-

sign Aid), a knowledge-based design environment that used design schemas to repre-

sent reusable designs (26:346). The design schemas represented design solutions that

were abstracted for a particular domain (25:163). The design schemas themselves

were represented using data flow diagrams, though the concepts captured in IDeA

were independent of any representation method (26:348). The goal of IDeA was to

improve the effectiveness of reuse and reduce the number of errors in the software

by reusing good designs early in the development process (26:346). A potential pit-

fall was the high reliance on a knowledgeable domain expert to perform the initial

domain analysis used to populate IDeA's knowledge base (25:177). The example

schema shown in Figure 10 shows how an abstract design could be instantiated in

two different reusable functions.

2.3 A Wider View

The following two representation techniques took a broader approach than the

previous techniques. Hypertext dealt with how various pieces of information for a

component could be arranged to provide a better representation, regardless of the

format the pieces of information were in. The metamodel proposed merging several

different representation techniques into one model, so that a complete representation

of the component could be maintained. These techniques are described in more detail

next.

2.3.1 Hypertext Hypertext was a method of allowing non-sequential access

to sections of text via machine processable links (13:18). Examples of hypertext

systems included IBIS, NoteCards, and PlaneText (13:21). The advantages of using

a hypertext approach included allowing related information to be readily accessible

in any order and allowing information to be structured in the most effective manner

21

Specialization Rules for the "Compute Dependent Revenue" Schema

Revenue Dependent
Dependence Revenue

(Flat Rate) (Progressive Rate)

Revenue Revenue

Compute Dependent Compute Dependent
Flat Rate Relvenue Scheduled Revenue

Dependent Depependen

Revenueu
Reevenue

Percentage Schedule

Figure 10. Example Schema Diagram (26:358)

22

(13:38). This made hypertext an excellent representation method for people (35:14).

With today's high power computers and corporate workstations, graphics capabilities

could be added to the hypertext system to create a hypermedia implementation.

In using hypertext or hypermedia for representing a component, several types of

information could be combined and presented in the format that was best for that

part of the representation. A drawback to a hypertext approach was getting "lost

in space", or losing orientation in all the data connections (13:38). This was usually

overcome by providing some type of overview picture or map to the user (13:19).

Figure 11 shows how a hypertext system works.

2.3.2 A Mdlamodel Jordan and Davis proposed a metamodel combining sev-

eral approaches to representing the requirements for software objects (23). The dif-

ferent views or approaches that were combined in the metamodel include data flow

diagrams (DFDs), object oriented analysis (OOA), and a finite state machine (FSM).

The reasoning for this approach was that no single technique could adequately rep-

resent all aspects of the object. (23:472) By combining the three approaches, the

strengths of each were captured. The DFDs provided data and control flow, OOA

provided descriptions of objects, attributes and operations, and the FSM provided

the system behavior through transitions in the state of the system (23:471). Us-

ing such a model provided an independence from design methodology, a consistent

view across differing methodologies, and a more complete view of the requirements

for the software object (23:478). An example metamodel showing combined DFD,

OOA, and FSM views is shown in Figure 12. While the figure shows all three views

at once, the metamodel is normally an internal model with only one view extracted

from it at a time.

23

S A

ddI/ _ _ _d

[i eI

I

I I

II
I I

I eDisplayi !

------------ 4-----------------------*

b d

Hypertext Database

Figure 11. Example Htypertext System (131:18)

24

<Menucomm Display
User % -Overlay

Cm N <Overlay Menu> Menu

Comm C omnmn Select
m o mm Overlay

<Oera ns n neie vely tmComm own

Menu' co

/.pMpmode Retrieve Overlay
Display ns Overlay/

<Scale Menu> Mode ns comm own i

Ie • Comm . £.<Overla, Info> / nt f..

Menu <Overlay Info> co ay

Com Scl own

Scale

Figurle<Overla Meta-model (23:477)

c.4 Summary

The previous sections discussed the various techniques for representing soft-

ware function and software design. The advantages and disadvantages of the differ-

ent techniques were presented for the techniques that were used for actual software

development or software reuse systems. The desired goals of newly proposed sys-

tems were also described. All the methods, both textual and graphical, had some

strengths and weaknesses. Finally, two various techniquesented a wider view were

examined. These techniques recognized that no one technique could completely rep-

resent software components, and so they presented different approaches to providing

more information using several techniques.

25

III. Methodology

As introduced in Section 1.4, the purpose of this effort was to answer the

following research questions:

1. How is software functionality currently represented?

2. How can software functionality be presented to a user?

3. What methods are effective in representing reusable software component design
and related design information?

4. How can software designs and design information be presented to a user?

A six step process was outlined in Section 1.5 to answer the research questions. The

six steps were:

1. Establish evaluation criteria for representations.

2. Evaluate current function and design representations.

3. Develop a prototype using highest evaluated representation(s).

4. Develop a questionnaire about prototype.

5. Evaluate prototype using questionnaire.

6. Analyze questionnaire results.

Each step is presented next in more detail.

3.1 Evaluation Criteria

This step was broken down into two substeps. The first was to determine what

characteristics of a representation were important and then define a set of criteria

based on those characteristics. The second substep was to develop a scale and a set

of guidelines for rating the various representations using the criteria. These substeps

are discussed next.

26

3. 1.1 Selecting Specific Criteria In order for the software library to be used,

the components must be understandable. Understandability is a primary issue of

the representation (17:303). To enhance understandability, several authors have sug-

gested characteristics that a representation method or the reusable component itself

should possess. Dubois proposed the following characteristics to improve the com-

munication effectiveness of knowledge representations: formality, deductive power,

abstraction capability, and conversion to other languages (16:1435-1436). Frakes

proposed several issues to consider for selecting a reuse representation, including

consistency, expressiveness, comprehensibility, presentation, library operations, ad-

ministrative issues, and implementation issues (17:303-304). Matsumoto suggested

the following attributes for reusable components: generality, definiteness, transfer-

ability, and retrievability (27:159). Rich identified the following properties of an

effective representation: expressiveness, combinality, semantic soundness, machine

manipulability, and language independence (34:315). Finally, Webster recommended

some requirements for a representation consisting of: rich representational features,

machine processability, inferencing mechanisms and a powerful user interface (35:7-

8). Since this thesis was concerned with evaluating several representation methods.

a set of evaluation criteria was developed that incorporated the characteristics sug-

gested above. The definitions of these evaluation criteria and the rationale for their

selection are presented below:

1. Generality: This evaluation criterion indicates whether the representation was
independent of programming languages, development methodologies or specific
applications (17, 27, 34). The reason for this criterion was:

"* The representation should not be dependent on any one computer lan-
guage or specific application since it will reduce the effectiveness of rep-
resenting components of other languages or applications (34:315).

"* The representation should not be dependent on the development method-
ology so that developers unfamiliar with the methodology can understand
the components (27:159).

27

2. Expressiveness: This criterion indicates how well the representation technique
could represent different types of components for the various layers of informa-
tion (17, 34, 35). The reason for this criterion was:

e The representation should be able to represent many kinds of reusable
components to be of value (34:315).

3. Understandability: This criterion indicated whether the representation could
be easily comprehended by people (17). The reason for this criterion was:

"* Understandability is critical for a representation since a component must
be understood before it will be reused (17:303).

"* Someone wishing to reuse the component must understand how the com-
pone•At works to be able to use it properly (3:5).

4. Consistency: This criterion shows whether there was agreed upon notation and
rules for interpreting the representation (16, 17). The reason for this criterion
was:

"* Consistency enables common interpretation in the transfer of large amounts
of information between people over time (16:1435).

"* Consistency is a part of the software quality factor of correctness as de-
fined in (5:3-12), which was rated high to very high on the level of impor-
tance to Air Force applications in (28:3-8).

5. Resolution: This criterion indicated how well the representation can represent
small differences between similar components (11). The reason for this criterion
was:

* Having a way to choose among similar components is critical for the user
(7:133).

28

Three of the criteria above were composites of some of the desirable software

representation characteristics that were mentioned previously. The criterion g9 n-

erality incorporated the characteristics: scope, generality, transferability, and lan-

guage independence. The criterion understandability embodied comprehensibi]itv

and conversion to other languages. Finally, the criterion consistency combined the

characteristics: formality, consistency, semantic soundness, and deductive capabil-

ity. The other two criteria simply reflected the two characteristics expressiveness

and definiteness.

The representation characteristic "machine processability" suggested by many

authors was not specifically included because it was implicity related to consistency.

When a representation is standardized or widely used, which for this effort is defined

as having high consistency, software tool developers quickly include it in automated

software development, tools to take advantage of its widespread use. Thus, a repre-

sentation that is rated high in consistency will either have or soon have the charac-

teristic of machine processability. Other characteristics were not included because

they were already implicitly contained in the concept of the layered approach. These

include abstraction capability, presentation, combinality, powerful user interface, re-

trievability, and other library operations. These characteristics are the basis of how

the layered approach is implemented. Two of the issues raised by Frakes were impor-

tant enough that they were addressed separately. They were administrative issues

(the financial cost of creating and updating the reusable library) and implementation

issues (the computer resource cost for using the library). These issues are addressed

in Section 3.3.1.

3.1.2 Developing Evaluation Guidelines Once the evaluation criteria for the

representations were chosen, a scale for each criterion needed to be defined. A forced

choice scale consisting of the five choices: Very Low, Low, Nominal, High and Very

29

High was used following the manner of (29). To help reduce the subjectivity of

the scale, the following guidelines were developed to help in evaluating the specified

characteristics of the representations.

1. Guidelines for evaluating representation generality

"* Very High: no language, methodology or application constructs or terms
were part of the representation

" High: minimal use of common language, methodology or application con-
structs or terms, where common constructs and terms were those used by
three or more different languages, methodologies or applications

" Nominal: moderate use of common and minimal use of specific language,
methodology or application constructs or terms, where specific constructs
and terms were those used by only one or two languages, methodologies
or applications

" Low: general use of common constructs and terms or moderate use of
specific language, methodology or application constructs or terms

"* Very Low: general use of specific language, methodology or application
constructs or terms.

[Note: See Figure 13 for examples of common and specific language, method-
ology and application constructs and terms.]

2. Guidelines for evaluating representation expressiveness

"* Very High: there were basic representational elements that correspond
with almost all component elements at a given layer

"* High: there were basic representational elements that corresponded with
some component elements, and other component elements could be rep-
resented by combinationc of representational elements

"* Nominal: most component elements could be represented by simple com-
binations of representation elements and others by complex combinations

30

Specific language Common language
constructs and terms constructs and terms

task (Ada) if... then... else

perform (cobol) function; call

common (FORTRAN) do; loop

set (Pascal) integer; real

Specific methodology Common methodology

constructs and terms constructs and terms

coupling, cohesion (SD) requirements analysis

objects, attributes (OOD) abstraction

model, modelling (JSD) module; modularity

Specific application Common application
constructs and terms constructs and terms

MAC Standard protocol

X400 handler

DDN file transfer

Figure 13. Examples of Language, Methodology and Application Constructs and
Terms

31

"* Low: most component elements required complex combinations of repre-
sentational elements to represent

"* Very Low: most component elements could not be usefully represented

[Note: see Figure 14 for a list of component types and component elements for
each layer.]

3. Guidelines for evaluating representation understandability

"* V/ery High: only general knowledge in software development required

"• High: some general knowledge of representations required

"* Nomninal: some training or experience with representations required

"• Low: some training or experience in the specific representation required

"* Very Low: extensive training and experience in the specific representation
required

4. Guidelines for evaluating representation consistency

" Very High: an official standard or established set of rules for notation and

interpretation existed

" High: a widely accepted notation and set of rules for interpretation existed
with minor variations (a de facto standard)

" Nominal: a commonly accepted notation and set of rules for interpreta-
tion existed with moderate variations, which included non-standard ex-
tensions to accepted or standard notation

" Low: only a few major variations of commonly accepted notation and
rules for interpretation; or research work not widely used or known but
based on accepted or standard notation

" Very Low: no commonly accepted notation or rules for interpretation; or
research work not widely used or known

32

LAYER COMPONENT TYPE ELEMENTS

Function Functional Description Operations

Data

Non-functional Req'ts "-ilities"

Timing

Security

Design Domain

Architectural Design Modules

Coupling
Input

Output
Processing

Dependancies Hardware

Software

Timing
Data Validity

Alternatives (same as Arch. Design)

Rationale Advantages
Disadvantages
Decisions

Process Methodology

Constraints
Verification

Quality Assurance

Figure 14. Types and Elements of Reusable Software Components

33

5. Guidelines for evaluating representation resolution

"* Very High: almost all differences could be represented

"* High: all major and most minor differences could be represented

"* Nominal: all major and some minor differences could be represented

"* Low: most major and some minor differences could be represented

"* Very Low: only a few major differences could be represented

Some examples might illustrate the resolution guidelines. For the functionality

layer, major differences imply different functions. An example would be the difference

between a swap routine that goes through a set of elements swapping their positions,

and a. sort routine that goes through a set of elements and may swap their positions

depending on some ordering scheme. Minor differences in the functionality layer

include differences in properties of a function. An example is the difference between

a stable sort and an unstable sort. The stability property of a sort function concerns

whether the ordering of elements with the same key is maintained (4:464). For

the design layer, major differences suggest different approaches or algorithms. An

example is the difference between a bubble sort, which uses an element exchange

approach, and a heap sort, which uses an element selection approach (4:462). Minor

differences in the design layer suggest differences in how an algorithm or approach is

implemented. An example is the difference between a bubble sort and a quick sort,

both of which are exchange sorts, but one exchanges single elements, and the other

exchanges subsets of elements (4:462).

3.2 Representation Evaluation

Given the evaluation criteria and guidelines in Section 3.1, the next step in the

process of answering the research questions was to use the criteria to evaluate current

34

functional and design representations. The representations to be evaluated were

those discussed in Chapter II. The evaluation consisted of reviewing documentation

describing the representations and evaluating them against the specified criteria, once

for the functionality laver and once for the design layer. Once the evaluation was

complete, a numeric score was calculated for each technique to arrive at an overall

score for each layer. The score was calculated by assigning a numeric value to each

possible rating and then averaging the ratings for the criteria for each technique. For

this work, the ratings and their corresponding numeric values are shown in Figure

15. The results of the evaluation are discussed in Section 4.1.

Rating Very Low Low Nominal High Very High

Value 1 2 3 4 5

Figure 15. Numeric Values of Evaluation Ratings

3.3 Develop Prototype

Once the representations were evaluated, the highest rated representation(s)

were incorporated into a prototype reusable software library interface. This involved

the substeps described next.

3.3.1 Select Components for Prototype Library One of the main concerns

that any library must address is what components should be included in the library.

As pointed out earlier by Frakes, the issue is one of costs, including the cost to create

and maintain the library (the administrative issue) and the cost in computational

resources to use the library (the implementation issue). Clearly the components that

are developed and put in the library must be valuable enough that they are worth

the cost to include in the library. The prototype developed for this effort was no

35

exception to this concern. In this case, though, the value of the components was

not going to be derived from their subsequent reuse since a prototype is designed to

demonstrate a concept, not to become the actual implementation. In this case the

value of the components would be derived from their ability to show how effective

the layered approach to presenting reusable software components was and how well

the evaluation criteria developed earlier identified the most efficient representation.

With this in mind, an example set of components was selected to be incorporated

into the prototype interface. To simplify the task of developing the prototy'pe while

trying to cover most aspects of the representations, the components had to meet the

following criteria:

1. Existence: the components were already developed.

2. Familiarity: the component functions were known or recognizable to the group
who evaluated the prototype since users would know what functions they were
looking for.

3. Similarity: some similar components were included to allow evaluation of the
representation resolution.

The following component sets were evaluated for potential use in the proto-

type: Booch components, Common Ada Missile Packages (CAMP), Ada Software

Repository (ASR) components, and graphics library routines. The results of the

evaluation are shown in Figure 16. A combination of the Booch components and

ASR components were chosen since they were already developed, included basic

functions that were familiar, and had several similar components. A combination of

the two sets was used since both met the criteria and both had some good example

parts. The CAMP parts exist and have similar components, but unless the evalua-

tors had previous experience with missile software, they would be unfamiliar. The

graphics library routines already exist and have similar components, but would only

be familiar to evaluators with a graphics background.

36

Software Components

Booch CAMP Parts ASR graphics
Criteria Components Components routines

Existence X X X X

Familiarity X X

Similarity X X X X

Figure 16. Results of Component Set Evaluation

3.3.2 Prepare Functional and Design Representations of Components Once

the representation and the component set were selected, representations of a mini-

mum set of components were developed. For this work, seventeen components were

implemented with three sets of similar components. This was to provide a reasonable

set of components to view the representations, especially similar components, as a

basis for evaluating the strengths and weaknesses of the representations.

3.3.3 Select Interface Technique An interface technique was selected next.

The technique was selected based on the following characteristics to simplify the

prototype development and use:

1. Simplicity: the interface was easy to use

2. Convenience: the interface had tools or basic constructs to simplify develop-
ment

3. Graphical Capabilities: the interface was capable of presenting graphical rep-
resentations

4. Availability: the interface was available easily and at low cost

37

5. Portability: the interface was able to be demonstrated on as many platforms
as possible

Several interface development toolkits were examined, including the Motif X-

Windows toolkit, Microsoft Windows Software Development Toolkit and the Simple

User Interface Toolkit (SUIT). The results of the evaluation are shown in Figure

17. All three development toolkits provided a simple to use mouse-based graphical

user interface. SUIT was rated as convenient since it provided an interface editor

that allowed adding or modifying interface elements immediately to the interface.

Motif and Windows required explicit and extensive coding to create the interface.

All three toolkits allowed for graphical capabilities. Motif and SUIT were avail-

able at no charge to educational institutions and were available via anonymous FTP

from their respective developers. The Windows Software Development Toolkit cost

approximately $400. The SUIT toolkit was available and portable to several dif-

ferent hardware configurations, including Sun Workstations, Sparcstations, Silicon

Graphics Iris Workstations, IBM PCs, and R6000 based computers. Motif was only

available for X-Windows based computers, and Windows was only available for IBM

PC and compatibles. Since SUIT satisfied all five selection criteria, it was selected.

3.3.4 Design and Implement Interface The SUIT interface toolkit was used

to implement the prototype interface. The main concern at this point was to create

an interface that presented the reusable software components using the layered ap-

proach discussed in Section 1.3 and using the highest rated representation technique

as described in Section 3.2. The first layer of reuse information was the functionality

and the second layer was design information. The last two layers, quality attributes

and source code, were not specifically addressed because the emphasis was on the

representation of functionality and design, but they were included since they were not

difficult to implement. This work was not concentrating on database issues such as

38

Toolkits

Criteria Motif MS Windows SUIT

Simplicity X X X

Convenience X

Graphical X X X
Cabability

Availability X X

Portability X

Figure 17. Results of Interface Development Toolkit Evaluation

efficient storage or retrieval so the components were not put into a formal database.

The representations were implemented simply, using the graphical capabilities of the

SUIT toolkit and accessed using a faceted keyword retrieval approach similar to the

one presented in (31). The reason for this approach was to stay within the time

constraints of this project.

3.4 Develop Questionnaire

A questionnaire was developed to get informal feedback on the strengths and

weaknesses of the component representations and layered approach used in the pro-

totype. The questions were developed to be specific about the user's experience since

these types of questions provided more useful results (24:896). The questions were

composed to cover each criterion used in selecting the representation to see how well

the representation met the criteria as well as how important each criterion was per-

ceived by the people using the prototype. Finally, general questions were included

to get an idea of the specific background of the people who did the evaluation.

39

3.5 ELvaluate Prototype

A group of software engineering professionals was selected to evaluate the pro-

totype. The evaluators came from a wide background within the Air Force. The

evaluators were given a short training lesson on the prototype interface and then

were given time to explore the prototype and the representations. The questionnaire

was given to the evaluators as a guide to direct their review.

3.6 Analyz(Results

After the group of evaluators finished their critique of the prototype, the ques-

tionnaires were reviewed to see if there were any areas identified as weaknesses or

areas suggested for improvements. These suggestions and problem areas were sum-

marized as recommendations for improvement and are presented in Section 5.7.

40

IV. Results

4.1 Representation Evaluation Results

The representation techniques discussed in Chapter II were evaluated using

the evaluation criteria presented in Section 3.1.1. The guidelines in Section 3.1.2

were used to assign ratings to each representation technique. Each technique was

evaluated for both the functionality and design layers. A summary of the evaluation

for the functional layer is shown in Figure 18. A summary of the evaluation for the

design layer is shown in Figure 19. The main differences in the ratings for the different

layers could be seen in the expressiveness and resolution ratings. Some techniques

express component functionality very well and were rated highly for expressiveness

in the functional layer, while they do not express design issues very well and so were

rated much lower for expressiveness in the design layer. A few techniques express

both layers fairly well. As for resolution, some techniques could show differences

between similar components at the functional level very well, while others did not.

Most techniques could show differences better at the functional level than at the

design level because there were fewer component types to try to represent.

Hypertext and a metamodel were evaluated separately using the same criteria.

The evaluation criteria, however, were redefined slightly to take into consideration

the broader perspective of these techniques and their ability to show multiple views.

The definitions used for the criteria in these evaluations were:

1. Generality: this criterion examined what limitations existed on the type of
views that could be presented.

2. Expressiveness: this criterion examined how complete was the picture of the
component that was provided by the multiple views.

41

Criteria

Representation Gen Exp Und Con Res

Text Description VH VH VH N VH

Keywords/Facets VH H VH N N

Frames N H L N H

Forms L VH H N H

Formal/Logical VH H L H N

DFD VH N H H L

Semantic Nets/E-R N N N L L

PDL H VH VH N H

Structure Charts N L N N L

Plan Calculus VH VH L L H

Schemas VH N N N L

KEY:

Gen - generality VH - very high

Exp - expressiveness H - high

Und - understandability N - nominal

Con - consistency L - low
Res - resolution VL - very low

Figure 18. Functional Layer Representation Evaluation Results

42

Criteria

Representation Gen Exp Und Con Res

Text Description VH L VH N N

Keywords/Facets VH VIL VH N VL

Frames N N L N L

Forms L H H N H

Formal/Logical VH L L H L

DFD VH VL H H N

Semantic Nets/E-R N L N L VL

PDL H H VH N H

Structure Charts N L N N N

Plan Calculus VH VH L L H

Schemas VH H N N L

KEY:

Gen - generality VH - very high

Exp - expressiveness H - high

Und - understandability N - nominal

Con - consistency L - low

Res - resolution VL - very low

Figure 19. Design Layer Representation Evaluation Results

43

3. Underq,,loadability: this criterion examined whether the relationships between
the views could be easily comprehended by people.

4. Consistevcy: this criterion examined how well the views were integrated to-
gether.

5. Resolution: this criterion examined how much detail could be captured by the
multiple views.

The results of their evaluation are shown in Figure 20. The rationale for all the

evaluations is included in Appendix A.

Criteria

Representation Gen Exp Und Con Res

Hypertext VH H H N VH

Metamodel H H N H N

KEY:

Gen - generality VH - very high

Exp - expressiveness H - high
Und - understandability N - nominal
Con - consistency L - low
Res - resolution VL - very low

Figure 20. Hypertext and Metamodel Evaluation Results

Once the ratings were assigned, a numeric score was calculated for each tech-

nique by averaging the numeric values of the ratings, shown previously in Figure 15,

for each technique. The scores for each technique are shown in Figure 21. As shown

in the figure, the simple text description obtained the highest overall score for the

functionality layer. At the design layer, PDL received the highest rating, followed

closely by text descriptions and plan calculus, and then forms and schemas.

44

Score

Functional Design
Representation Layer Layer

Text Description 4.6 3.6

Keywords/Facets 4.0 3.0

Frames 3.2 2.6

Forms 3.6 3.4

Formal/Logical 3.6 3.0

DFD 3.6 3.4

Semantic Net/E-R 2.6 2.2

PDL 4.2 4.0

Structure Charts 2.6 2.8

Plan Calculus 3.6 3.6

Schemas 3.2 3.4

Figure 21. Numeric Scores of Representation Technique Evaluation

4.2 Research Question 1 Results

The first research question presented in Section 1.4 was "how is software func-

tionality currently represented?" Several representations were presented in Section

2.1 to answer this question. These representations included both textual and graphi-

cal methods. The representations had their origins in the areas of language (text de-

scr,,tions and forms), information classification and retrieval (keywords and facets),

database technologies (entity-relationship diagrams), artificial intelligence (semantic

nets and frames), mathematics (formal and logical approaches), and software devel-

opment (data flow diagrams). These areas are general groupings that cover most of

45

the types of software representations (35:8-9). The techniques that were discussed

were representative of how software functionality is currently represented.

4.3 Restarch Question 2 Results

The second research question presented in Section 1.4 was "how can software

functionality be presented to a user?" This question was answered in part by the

evaluation of the representations presented in Section 2.1. The results of the evalua-

tion were shown in Figure 18. The results were that the highest rated representation

for software functionality was simple text descriptions. To complete the answer to

the question, a prototype reusable software library was developed to present the

software component information using the layered approach discussed in Section

1.3. The functionality layer of the prototype was implemented using text descrip-

tions and included some information suggested by Frakes and Nejmeh appropriate to

describing functionality (19:147). The actual description included the name of the

component, author, creation date, a short abstract, keywords, properties, inputs,

and outputs. The prototype was evaluated to determine how well the software func-

tionality was presented to the user using this approach. The results of the evaluation

are discussed in Section 4.6.2.

4.4 Research Question 3 Results

The third research question presented in Section 1.4 was "what methods are

effective in representing reusable software component design and related design in-

formation?" Several representations were presented in Section 2.2 to answer this

question, including textual methods and graphical methods. The representations

were evaluated using the criteria outlined in Section 3.1.1 to determine which ones

were effective. The results of the evaluation were shown in Figure 19, with the av-

eraged numeric scores shown in Figure 21. The highest rated representation was

46

Program Design Language (PDL), closely followed by text descriptions and Plan

Calculus. The score for Plan Calculus was the same for the design layer as the func-

tionality layer, but it was one of the highest scoring representations for the design

layer because most other representations had lower scores for the design layer than

the functionality layer. The reasons for these results are discussed in Section 5.4.

The close scores for several representations showed that there were several techniques

that were about equally effective in representing reusable software component design.

4.5 Research Question 4 Results

The fourth research question presented in Section 1.4 was "how can software

designs and design information be presented to a user?" A prototype reusable soft-

ware library was developed to present the software component information using the

layered approach discussed in Section 1.3. The design layer of the prototype was

implemented using examples of the three techniques that had the highest average

numeric scores from Figure 21. These were PDL, Plan Calculus and text descrip-

tions. Most of the component representations used PDL as specified in (8) to show

the architectural design. Then some components were also implemented using the

Plan Calculus as described in (33). The components chosen to be implemented in

the Plan Calculus were similar to each other so that they could be compared to each

other in both the Plan Calculus and the PDL format. Finally all the components also

had an associated text description for the design information. The prototype was

evaluated to determine how well the software design information was presented to

the user using these various approaches. The results of the evaluation are discussed

in Section 4.6.2.

47

4.6 Prototype Reusable Software Library

4.6.1 Prototype Development The prototype was developed using the SUIT

toolkit and layered approach as suggested in Section 3.3.4. An interactive mouse

and menu driven interface was developed using the capabilities of the SUIT toolkit.

The interface was comprised of menus to save and retrieve information stored in

files, to specify and revise component search criteria, to view the various layers of

component information, and to present miscellaneous utilities and help information.

The purpose of the interface was to simplify the user's task of searching for and

viewing a set of software components at various levels of detail.

The interface was developed to allow the addition of components to the database

with minimal impact to the interface code. This required splitting the interface into

two programs: a program to present the interface menus, request the search criteria,

and allow selection of matched components; and a program to draw the selected com-

ponent information. The interface program simply reads and searches a component

information file that is a separate text file which could be edited without affecting

the interface program. The drawing procedures for the components, however, cur-

rently have to be coded as part of the drawing program that must be recompiled each

time a component is added. In this way the main interface was kept separate from

the details of the component representations and could be used with any component

representation.

A demonstration script, or tutorial, was written to familiarize the prototype

evaluation participants with how to use the prototype. It included a description of

the concept behind the layered approach to presenting the reusable software compo-

nent information as well as a description of how the interface worked. The description

of the interface described each menu that was available and their associated com-

mands. It then presented several step-by-step procedures to perform the common

48

actions associated with finding a reusable component from the library. Each pro-

cedure also included a running example to describe what the expected results were

for each action. The tutorial that was provided to the evaluators is included as Ap-

pendix B. Some figures showing examples of how the interface appeared are included

in Appendix C.

4.6.2 Prototype Evaluation A small set of evaluators was selected to com-

plete the prototype evaluation. A copy of the questionnaire that was provided to the

evaluators is included in Appendix D. The purpose of the evaluation was to provide

a "dry run" of the prototype and questionnaire, to see where any difficulties might

arise or where some improvements and clarifications could be made. Seven software

engineers with varied software development experience completed the evaluation. A

summary of their responses is included in Appendix E. The scale used for the eval-

uation ranged from 1 to 5, which corresponded to the responses: strongly disagree,

somewhat disagree, borderline, somewhat agree, and strongly agree, respectively.

Most. of the evaluators agreed with the statements about the functionality layer

representation, with responses between 4 (somewhat agree) and 5 (strongly agree).

The statements with the highest agreement included that the functionality represen-

tation was independent of specific programming languages, development methodolo-

gies, and applications; the representation specified what the component did; and the

representation was understandable and unambiguous (average responses from 4.3 to

4.9). The two statements with the lowest averages and most varied responses were

how well non-functional requirements were represented (average response 3.8, stan-

dard deviation 1.2) and how well the representation distinguished between similar

items (average 3.4, standard deviation 1.4). Some of the comments provided for

the functionality layer asked for the definition of non-functional requirements (as

49

used in statement 5), asked for the definition of properties (a keyword used in the

representation,) and asked how exceptions and errors were represented.

The responses for the design layer representations (without text supplement)

were much more varied. The PDL representations had higher agreement on the av-

erage than the Plan Calculus representations. The statements that had the lowest

responses for both representations were how well the representations specifed system

dependancies, design alternatives, design rationale, and design methodology. These

were statements 18 through 21 for PDL (with average responses from 2.4 to 2.9)

and the corresponding statements 38 through 41 for Plan Calculus (averages from

2.1 to 2.6). These statements also had the most variations in responses, with stan-

dard deviations for the PDL representation ranging from 1.2 to 1.5 and for the Plan

Calculus representation ranging from 1.4 to 1.5. The Plan Calculus representation

also had consistently lower responses for statements addressing whether the repre-

sentation was understandable, unambiguous, distinguished between similar items,

and specified architectural design, with average responses from 2.3 to 3.6. Some of

the comments, however, indicated that the evaluators were unfamiliar with the rep-

resentation and that it was very difficult to comprehend. One comment suggested an

improvement by having a help screen that included definitions of the Plan Calculus

symbology to explain what they meant.

The responses for the text supplement for the design layer were similar between

the PDL and Plan Calculus representations, but varied in degree. The statement

that the text was necessary to understand the component representation (statement

23 and 43) was highly agreed with for Plan Calculus (average 4.6, std dev .73),

but only moderately agreed with for PDL (average 3.6, std dev .49). The statement

that text was necessary for distinguishing between similar components (statement 24

and 44) was only moderately agreed with for both PDL and Plan Calculus (average

50

3.6 and 3.7, resp.) Text was not viewed as necessary for representing architectural

design (statements 2.5 and 45) for either PDL or Plan Calculus (average 2.0 and 3.0

resp.) The statements that text was necessary to represent system dependancies,

design alternatives, design rationale, and design methodology (statements 26 - 29

and 46 - 49) were agreed with to varying degrees for the two representations (PDL

average responses from 3.7 to 4.4 and Plan Calculus average responses from 3.6 to

4.6). One of the evaluators made that comment for the PDL representation that "it

is important to use both thie PDL and text in making decisions."

Finally, the statements concerning the prototype interface were consistently

agreed with. The three statements that the layered approach was helpful to under-

standing components, the interface was easy to use, and the interface was logically

arranged (statements 53, 56, and 57), were all strongly agreed with by all the evalua-

tors (response 5). The statements that the layered approach was helpful for compar-

ing components and the layered approach covered component information well were

also agreed with (average responses 4.9 and 4.6, respectively.) The comments pro-

vided about the interface indicated that the interface was liked, that it was "simple,

yet effective."

51

V. Conclusions and Recommendations

5.1 Representation Evaluation Conclusions

The representation evaluation revealed that one of the evaluation criteria may

not be appropriate. The evaluation criterion that provided questionable value was

expressiveness, which was defined as how well the representation technique could

represent different types of components for the various layers of information. Most

representations examined were not designed to represent several types of informa-

tion, so most of them had low expressiveness ratings. Since this was a result of the

definition and it affected most of the representations the same way, it did not add

much to the evaluation. One conclusion may be that the definition was inappropriate

and one representation should not be expected to represent everything. In this case

a reusable software library may require a couple of different types of representations

for different types of information, such as the combination of graphical and textual

presentations used in the prototype. The other conclusion may be that a new repre-

sentation still needs to be developed that can represent several types of information.

Arguments could be made for both cases.

A second evaluation criteria that had consistently low results was resolution.

Resolution was defined as indicating how well the representation could represent

small differences between similar components. This characteristic, however, is im-

portant for a reusable library. The implications of the low resolution ratings are

further discussed in Sections 5.2 and 5.4.

5.2 Research Question 1 Conclusions

Several representations were presented in Section 4.2 to answer the question

"how is software functionality currently represented?" Each of the representations

52

was evaluated as described in Section 4.1. The areas where most of the represen-

tations were weak were consistency (average rating of "nominal") and resolution

(average rating of "nominal"). The weak consistency rating showed that most of the

current representations for software functionality were not standardized or widely

used yet. No one has developed a representation that is sufficient to meet the needs

and expectations for representing functionality. This is also reflected by the fact that

most representations did not have widely available automated tool support. They

lacked the characteristic of machine processability.

The weak resolution rating indicated that most current representations were

not expressive enough to allow users to easily distinguish between similar components

for a software library environment. As a result, most current libraries either offer no

help in choosing a component and require the user to examine source code to make a

decision, or provide artificial help in selecting components using arbitrary evaluation

schemes. One such approach was to provide an abstract ranking of components

based on assumed relationships between descriptive keywords (31:11-12). So while

several representations for software functionality exist, none is currently the best

answer to representing software components.

5.3 Research Question 2 Conclusions

The representation evaluation and the prototype were used to try to answer

the question "how can software functionality be presented to a user?" As presented

in Section 4.1, text description was the highest rated functionality representation

in the evaluation. This was due in large part because non-functional component

requirements are currently difficult to represent without text. These requirements

include reliability, maintainability, safety, timing, security, concurrency and simi-

lar requirements. Most representations reviewed did not include any method of

53

representing the non-functional aspects of component functionality. Some of these

characteristics, however, would be found in the third representation layer, which is

quality attributes. But this would make it harder for a user trying to find a compo-

nent with a specific function and timing constraint, for example. They would have

to view two different layers rather than just one. Plan Calculus did recognize the

need for additional types of information and allowed constraints to be included in

the representation as predicate calculus assertions. The main shortcomings of Plan

Calculus, though, were that it required specific training to understand the notation

(low understandability) and it was not a standardized or widely used notation (low

consistency).

The prototype evaluation provided some additional perspectives about repre-

senting software functionality to a user. The questionnaire presented several state-

ments about the functionality representation, which was implemented using text

descriptions based on the results of the representation evaluation mentioned above.

The two statements from the questionnaire that had the lowest average responses

with the most variations were how well non-functional requirements were represented

and how well the representation distinguished between similar items. These results

may indicate areas that require improvement in the representation. They may also

indicate areas where clarifications in the prototype are required, since some of the

comments from the questionnaire asked for the definition of non-functional require-

ments (from statement 5) and the definition of properties (a keyword used in the

prototype functionality representation.) A re-evaluation would need to be performed

after the clarifications were added to the prototype to determine whether the repre-

sentation needed further improvement.

Based on the observations mentioned, a new representation apparently is still

needed or an existing representation should be modified to address the issues of

54

representing non-functional requirements and distinguishing between similar com-

ponents. The representation then needs to become widely accepted or standardized.

Until a representation is developed that can adequately address these issues, text

will remain the most common representation for functionality, or at least will be a

necessary supplement to any representation.

5.4 Research Question 3 Conclusions

The design representation evaluation was used to answer the question "what

methods are effective in representing reusable software component design and related

design information?" The text. based techniques were again among the highest rated

design representations, with PDL. text descriptions, and forms having three of the

highest average numeric scores. Again the ratings were influenced by some design

components that are more easily expressed in text, such as design dependencies,

rationale, and design process elements such as methodology, verification, and quality

assurance.

One unexpected result, however, was that most of the representations had lower

scores for the design layer than the functionality layer. This was because even though

the ratings for the criteria generality, understandability, and consistency were largely

independent of the representation layer and did not change between the two layers,

the ratings for expressiveness and resolution were mostly lower for the design layer

than the functionality layer. The average expressiveness and resolution ratings were

both between low and nominal. As mentioned above, the ratings were influenced

partly by the fact that the design layer was defined to include several types of design

information in addition to the commonly thought of architectural design. Most

of the representations reviewed did not include any method of representing these

additional aspects of component design. As a result, most of the representations

55

were rated low for expressiveness. The weak resolution ratings again indicated that

most current representations were not expressive enough to allow users to easily

distinguish between similar design components for a software library environment.

The generally lower scores for the design representations and closeness of several of

the scores indicated that no representation was distinctly more effective than the

others for representing design information.

5.5 Research Question 4 Conclusions

The prototype was used to answer the question "how can software designs and

design information be presented to a user?" The prototype design information was

implemented using a layered approach with PDL, Plan Calculus, and text descrip-

tions as described in Section 4.5. The text descriptions were added to the design

representations to provide clarifications of design information that could not be easily

captured by the PDL and Plan Calculus.

The prototype evaluation revealed several areas that could be improved for the

design representation, as discussed in Section 4.6.2. For the Plan Calculus represen-

tations, the lower responses for the statements on representation understandability,

ambiguity, distinguishability, and descriptiveness indicate that Plan Calculus has

several hurdles to overcome before it could be an acceptable design representation

for a reusable component library. It would either have to become standardized so

that it is commonly taught as a representation so that many people would under-

stand it, or the library itself would have to provide a very detailed tutorial on the

Plan Calculus symbology so users could determine what a particular component

representation meant. The first approach would be better since a standard would

help insure that the representations were interpreted consistently by different peo-

ple. The second approach of having a tutorial available would also be beneficial even

56

if the representation was standardized to allow users to have on-line help available

while viewing component representations. A tutorial without having a standardized

representation would only be of limited value.

The statements that had the lowest responses for both PDL and Plan Calculus

representations addressed how well the representations specifect system dependan-

cies, design alternatives, design rationale, and design methodology. This supports

the results of the representation evaluation discussed in Section 5.4 that the repre-

sentations were not designed to represent many different types of design information.

The implications of these results were discussed in Section 5.1. The responses to the

statements about the text supplement to the design information indicated that the

text was not required to be present, but that it was very helpful, especially for the

Plan Calculus representations that may not have been familiar to the user.

The results from the prototype evaluation indicated that no representation

was definitely more effective than the others for representing design information.

For the current representations, text description was a useful supplement to the

representation. The biggest issue seemed to be trying to represent several types of

design information. All these items imply that a representation needs to be developed

or an existing one modified to allow representing many types of design information

while being easy to understand and widely used.

5.6 Prototype Conclusions

One area of the prototype that was weak was the drawing of the representa-

tions. The representations were drawn by a program that was developed using the

SUIT drawing capabilities, which were somewhat limited. The SUIT graphics func-

tions were limited to lines, arcs, rectangles, and text. A function had to be coded

for each higher level object used in the various representations, such as the hatched

57

lines and lines with arrows in the Plan Calculus rep-,sentations. The representa-

tions were also constrained to being developed as part of the drawing program. Any

changes to the representations had to be recoded and the entire drawing program

recompiled. This was accepLable for the prototype, but for an actual reusable library

system would be unacceptable. This would be improved if the representations had

automated tools that could draw the representation independently from the drawing

program. The library system would then be much more portable and would require

much less maintenance as the component collection grew. The representations used

in the p)rototype, however, were not standardized or the most widely used, with the

resulting lack of too] support and reflected low to nominal consistency ratings.

The prototype evaluation provided additional insights about the prototype,

through explicit comments as well as observations from the results. One comment

was made that it might be helpful if the user had the choice of representations so

they could pick the one they understood the best. Another evaluator stated that it

might be more helpful to have available the text information, PDL representation

and the graphical representation, such as the Plan Calculus, available to present

the component information. The responses from the questionnaire also indicated

that the representations used were not the best representations, as discussed in the

previous sections. Most of the comments about the interface itself, including menus,

arrangement, and so on, indicated that the interface worked well, and the layered

approach to presenting component information was successful.

5.7 Recommendations for Further Work

One area that could be followed up is to incorporate the clarifications and im-

provements for the prototype suggested in the questionnaire and mentioned above.

Part of the purpose of the prototype evaluation "dry run" was to find the areas that

58

needed more work in the prototype so they could be eliminated. Once these areas

were identified, the next step would be to include them in the prototype. Then a

more thorough investigation and evaluation could be performed. The results of a sec-

ond evaluation would more accurately reflect the effectiveness of the representations

evaluated and not be influenced as much by shortcomings in the prototype.

A second area that could be pursued farther is in evaluating additional func-

tional and design representations. The purpose would be to find some that better

meet the evaluation criteria, to provide a stabler basis for evaluating the effective-

ness of the layered approach to presenting reusable component information. The

representations included in this effort were only representative of the many tech-

niques available. New ones are continually being researched and developed. Some

new ones have begun to address the problems pointed out in the evaluation, such

as the work done with Plan Calculus and formal representations. A new technique

may be available that addresses the issues raised here. Only after a more thorough

investigation has been performed and a more detailed analysis undertaken could a

definitive answer be made to the question of what is the best representation method

for a reusable software library. This work was mainly to develop the presentation

concepts and evaluation criteria that lead to the next step.

Anvther area of work that could be pursued is adding to the component library.

The components included in the prototype were chosen to simplify the development

of the prototype as well as to help in the evaluation of the representations. A larger

component collection with more realistic application components may give more use-

ful evaluation results. One approach to expanding the component collection would

be to find an appropriate domain, perform a domain analysis, and develop reusable

components that implement the commonalities found between systems in that ap-

plication domain (12:224). This approach would allow the systematic development

59

of the information in the functionality layer, design layer, and quality layer as well

as the final source code. A second approach would be to reverse engineer existing

components that are widely usable. This approach would have the advantage of

having source code that is immediately available for inclusion in the library. The

higher levels of information could be added as time and resources permitted. Either

approach would work in expanding the component library.

60

Appendix A. Rationale for Representation Evaluations

A.I Rationale for Functional Layer Evaluations

The following sections provide the rationale for why the various representations

were rated as they were for the component functionality layer.

A. 1.1 Evaluation of Textual Descriptions The following evaluations are for

textual descriptions as a representation of software components. The descriptions are

assumed to be in simple English prose and do not include any programming language

constructs or actual source code. Those constructs would be included under Program

Design Language (PDL).

1. Generality (rated VH): since ordinary text is used, it is not limited to using
any common or specific constructs or terms.

2. Expressiveness (rated VH): the functionality elements (objects and operations)
are directly expressed by the representational elements nouns and verbs, and
the non-functional requirements could be expressed by adjectives and simple
combinations of nouns and verbs.

3. Understandability (rated VH): the only knowledge required is common reading
skills and general knowledge of software.

4. Consistency (rated N): English has rules for interpretation, but since words
have several shades of meanings, the representation can be ambiguous.

5. Resolution (rated VH): text could be used to describe functional and non-
functional elements very well.

A. 1. 2 Evaluation of Keywords/Facets The following evaluations are for key-

words, or facets, as a representation of software components. It is assumed that the

keywords are not constrained to any particular language, methodology or applica-

61

tion. While the number of keywords was not specifically assumed, it was assumed

the number was limited.

1. Generality (rated VH): since keywords and facets are chosen from ordinary
terms, they are not limited to common or specific language, methodology or
application constructs or terms.

2. Expressiveness (rated N): the non-functionality elements would require com-
plex combinations of keywords to represent and would be limited by number
of keywords.

3. Understandability (rated VH): they are not constrained to common or specific
language. methodology or application constructs or terms.

4. Consistency (rated N): keywords could have various shades of meanings, which
could allow ambiguity.

5. Resolution (rated N): only major and a couple minor differences in functional
and non-functional elements could be represented since only a few key words
are used.

A. 1.3 Evaluation of Frames The following evaluations are for frames, as de-

scribed in (15), as a representation of software components.

1. Generality (rated N): it used a few methodology specific terms such as object,
attribute and action (operation) (15:41).

2. Expressiveness (rated H): it had elements (slots and fillers) to represent func-
tional and non-functional aspects with minor inconsistencies.

3. Understandability (rated L): the frames use specific constructs which would
require training (e.g. has-actor, has-agent, has-environment (15:44)).

4. Consistency (rated N): frame-based approaches have some variations

5. Resolution (rated H): the frames could represent major differences and some
minor differences with a little work.

62

A. 1.4 Evaluation of Forms The following evaluations are for forms, as de-

scribed in (27), as a representation of software components.

1. Generality (rated L): it used Ada language specific constructs such as task,
private and exception (27:173-75).

2. Expressiveness (rated VH): they have elements (Ada elements) to represent
functional elements, and can use text to represent non-functional elements

3. Understandability (rated H): since the forms use Ada as well as text, they
would require some general Ada knowledge to understand.

4. Consistency (rated N): forms are essentially a known notation (Ada) with some
extensions.

5. Resolition (rated H): forms could represent most major differences and some
minor differences with some work.

A.1.5 Evaluation of Formal/Logical Approaches The following evaluations

are for formal or logical representations for software components.

1. Generality (rated VH): it used mathematical or logical notation which was not
constrained to any language, methodology or specific application.

2. Expressiveness (rated H): it can represent functional elements, but needs com-
binations to represent non-functional elements.

3. Understandability (rated L): formal notations such as Ted (20) and Z (22)
require some training or instruction to understand and interpret them.

4. Consistency (rated H): they are based on extensions to known mathematical
or logical notation, but some variations exist.

5. Resolution (rated N): most major differences in functional elements are repre-
sentable, but minor differences would be difficult.

A.1.6 Evaluation of Data Flow Diagrams The following evaluations are for

Data Flow Diagrams (DFDs) as a representation of software components.

63

1. Generality (rated VH): the graphical elements of DFDs are not constrained to
any language, methodology or application constructs or terms.

2. Erpressiveriess (rated N): it has elements for the functional elements, but would
require complex combinations to represent non-functional elements.

3. Understandability (rated H): DFDs have only simple graphical elements that
are commonly taught as part of most software development courses.

4. Consistency (rated H): DFDs have a commonly accepted notation with some
minor variations.

5. Resolution (rated L): most major differences in functionality could be repre-
sented, but few minor differences in functional or non-functional elements.

A.1.7 Evaluation of Semantic Nets/E-R Diagrams The following evaluations

are for semantic nets and entity relationship diagrams as representations of software

components.

1. Generality (rated N): they use the specific methodology terms and constructs
of objects and attributes (16:1432).

2. Expressiveness (rated L): it has elements (objects) for the functional element
data, but would require complex combinations to try to represent operations
and non-functional elements.

3. Understandability (rated N): E-R diagrams are a common represenation in-
cluded in general sofware development education, but semantic nets are not as
common.

4. Consistency (rated L): E-RI diagrams have common notation with a few varia-
tions and extensions, while semantic nets have a few variations but little agreed
upon semantics (16:1432).

5. Resolution (rated L): few non-functional elements could be represented.

A.1.8 Evaluation of PDL The foilowing evaluations are for PDL as a repre-

sentation of software components. PDL is assumed to not be constrained to any one

language, but may include actual source code.

64

1. Generality (rated H): PDL uses only text and common language constructs
and terms.

2. Expressiveness (rated VH): PDL has the same elements available as text to
represent functional and non-functional elements.

3. Understandability (rated VH): PDL requires only general knowledge of common
programming language constructs and terms.

4. Consistency (rated N): PDL has commonly accepted notation using common
language constructs, but has several variations.

5. Resolution (rated VH): same effectiveness as normal text description.

.4.1.9 Evaluation of Structure Charts The following evaluations are for Struc-

ture charts as a representation of software components.

1. Generality (rated N): constrained to use common language constructs such as
function call and iteration.

2. Expressiveness (rated L): it has elements for functional elements, but can't
represent non-functional elements.

3. Understandability (rated N): some training in software development and rep-
resentations required.

4. Consistency (rated N): has a commonly accepted notation with various exten-
sions.

5. Resolution (rated L): functional elements could be represented with simple
combinations, but non-functional elements would not be usefully represented.

A.1.10 Evaluation of Plan Calculus The following evaluations are for Plan

Calculus as a representation for software components.

1. Generality (rated VH): not constrained by common or specific language, method-
ology or application constructs or terms.

65

2. Expressiveness (rated VH): it has elements for all functional and non-functional
elements

3. Understandability (rated L): requires some training to understand new nota-
tion.

4. Consistency (rated L): research work not widely used but built on known con-
cepts of data flow and predicate calculus (34:323-324).

5. Resolution (rated H): most elements could be simply represented.

.4.1.11 Evaluation of Schemas The following evaluations are for Schemas as

a representation for software components.

1. Generality (rated VH): not constrained by common or specific language, method-
ology or application constructs or terms.

2. Expressiveness (rated N): it has elements for functional elements, but would
require complex combinations to express non-functional elements.

3. Understandability (rated N): only general training with software representa-
tions required since Schemas use DFDs.

4. Consistency (rated N): they have a common notation with some addtional
extensions, since schemas are based on DFDs.

5. Resolution (rated L): could not easily represent non-functional elements, such
as timing or resources required.

A.2 Rationale for Design Layer Evaluations

The following sections present the rationale for why the various representa-

tions were rated as they were with respect to representing component design infor-

mation. Since the evaluation criteria generality, understandability, and consistency

were largely independent of the representation layer and did not change between the

two layers, they are not repeated here. Only the criteria that changed are shown

below.

66

A.2.1 Evaluation of Textual Descriptions The following evaluations are for

textual descriptions as a representation of software components. The descriptions are

assumed to be in simple English prose and do not include any programming language

constructs or actual source code. Those constructs would be included under Program

Design Language (PDL).

1. Expressiveness (rated L): it requires extensive (lengthy) text description to rep-
resent design elements, compared to a more succinct graphical representation.
for example.

2. Resolution (rated N): text could be used to describe functions and algorithms
well enough to show differences between components, but few low level imple-
mentation differences could be described.

A.2.2 Evaluation of Keywords/Facets The following evaluations are for key-

words, or facets, as a representation of software components. It is assumed that the

keywords are not constrained to any particular language, methodology or applica-

tion. While the number of keywords was not specifically assumed, it was assumed

the number was limited.

1. Expressiveness (rated VL): several elements would not be representable using
just a few keywords, such as design rationale, test plans and procedures; and
others, such as design and algorithms, would be difficult to represent.

2. Resolution (rated VL): only a few major differences in function and algorithms
could be represented, since only a few key words are used.

A.2.3 Evaluation of Frames The following evaluations are for frames, as de-

scribed in (15), as a representation of software components.

1. Expressiveness (rated N): frames would require some simple and some complex
combinations of slots and filler to represent the design elements.

2. Resolution (rated L): the frames could represent most major differences, but
would be difficult to represent low level differences.

67

A.2.4 Evaluation of Forms The following evaluations are for forms, as de-

scribed in (27), as a representation of software components.

1. Expressiveness (rated H): forms could represent most design elements but
would need some longer descriptions to represent. validation information.

2. Resolution (rated H): The forms could represent most differences for Ada com-
ponents, but may have difficulty for components in other languages.

A.2.5 Evahlatiori of Formal/Logical Approaches The following evaluations

are for formal or logical representations for software components.

1. Expressiveness (rated L): it would be difficult to represent low level elements
such as design alternatives or rationale and would require complex combina-
tions of elements to represent validation information.

2. Resolution (rated L): differences in algorithms are representable, but low level
implementation details are not.

A.2.6 Evaluation of Data Flow Diagrams The following evaluations are for

Data Flow Diagrams (DFDs) as a representation of software components.

1. Expressiveness (rated VL): it could not usefully represent design elements such
as architectural design, rationale, or validation information.

2. Resolution (rated N): different design approaches could be represented, but few
low level implementation details.

A.2.7 Evaluation of Semantic Nets/E-R Diagrams The following evaluations

are for semantic nets and entity relationship diagrams as representations of software

components.

1. Expressiveness (rated L): it is difficult to represent architectural design ele-
ments and validation information.

68

2. Resolution (rated VL): only a few major differences could be represented, al-
most no low level implementation details.

A.2.8 Evaluation of PDL The following evaluations are for PDL as a repre-

sentation of software components. PDL is assumed to not be constrained to any one

language, but may include actual source code.

1. Expressiveness (rated H): PDL has elements for architectural design, and with
some work expresses design rationale and validation information.

2. Resolution (rated H): almost all differences could be represented, but minor
differences would require some work.

A4.2.9 Evaluation of Structure Charts The following evaluations are for Struc-

ture charts as a representation of software components.

1. Expressiveness (rated L): it has elements for architectural design, but couldn't
usefully represent rationale or validation information.

2. Resolution (rated N): low level differences are difficult to represent.

A.2.10 Evaluation of Plan Calculus The following evaluations are for Plan

Calculus as a representation for software components.

1. Expressiveness (rated VH): has graphical elements for design aspects, with
some work to represent validation information and architectural design.

2. Resolution (rated H): most major differences could be represented, with some
work required to represent minor differences.

A. 2.11 Evaluation of Schemas The following evaluations are for Schemas as

a representation for software components.

69

1. Expressiveness (rated L): would require complex combinations of data flows and
constraints to represent elements such as rationale and validation information.

2. Resolution (rated L): could not represent some low level differences, such as
timing or resources required.

A.3 Rationale for Hypertext and Metamodel Evaluations

.4.3.1 Evaluation of Hypertext The following evaluations are for hypertext as

part of the representation of software components. The nodes of the hypertext are

assumed to be able to include any text or graphics, including other representation

techniques.

1. Generality (rated VH): hypertext is not constrained on what type of views it
can include as nodes, assuming it is capable of graphical links.

2. Expressiveness (rated H): it can provide many views to create a complete pic-
ture, but has no guidance or criteria to ensure it.

3. Understandability (rated H): it does not require any special knowledge to follow
the links which simply "point" to more information.

4. Consistency (rated N): No enforced consistency between views, simply jumps
- the user can get lost.

5. Resolution (rated VH): hypertext can capture as much detail as needed.

A.3.2 Evaluation of a Meta-model The following evaluations are for a Meta-

model as described in (23) as a representation of software components.

1. Generality (rated H): there are no explicit constraints on what views could be
included, but currently only three are defined.

2. Expressiveness (rated H): it provides the main views of objects and relation-
ships, data and operations, and states and transistions.

70

3. U~dersla~dability (rated N): it requires some specific training and experience
to understand how all three methods are tied together.

4. Consistcncy (rfted H): the three views have been related and described how
they tie together.

5. Rfsohition (rated N): limited to the resolution of the three views.

71

Appendix B. Tutorial for the Prototype Reusable Software Library

The demonstration must be run from Open Windows, version 3. To start the

demo, change to the psiebels/suit/thesis directory from the command line or file

manager, if not already there. Then enter proto at the command line or click on the

PROTO executable file icon in the file manager.

B. 1 Overvicw

The main window is divided into two areas: the menu bar and the work area.

The menu bar has the following pulldown menu options: File commands, Search

commands, View commands, Utilities, System commands and Help. It also has

a fast quit button in the upper left corner. The actual component information is

presented in another window that will appear on the screen. If you don't know how

to interact with Open Windows, ask.

The following are short descriptions of the various menus.

"* File Commands: These include commands to save the current search criteria

to a file, retrieve previous search criteria from a file, and exit the prototype.

The save and retrieve functions are currently not implemented.

"* Search Commands: These include commands to specify a new search criteria or

revise the previous search criteria. If no previous search criteria was specified,

an information i ýsage is shown.

"* View Command: This function allows you to view a component from a set of

components found for a previous search. If no search has been performed yet,

an information message will so state.

72

"* Utilities: This menu provides some component utilities to print a selected

source file or save it to disk. These utilities have not, been implemented in the

prototype.

"* System Commands: This menu provides functions to add and delete compo-

nents from the library. These functions are restricted and require a password.

"* Help: This function presents a dialog box listing information about the menu

choices and some definitions used in the prototype.

B.2 Demonstration

The following sections present the various features that will normally be used

with the prototype. Each section lists a step by step procedure on how to normally

perform the desired task. The sub-bullets describe what should be displayed as a

result of each step using an example.

B.2.1 Helpful Information

B.2.1.1 Prototypc Concept The Prototype Reusable Software Library

Utility was developed using a lavered approach to presenting reusable software com-

ponent information. The components are presented in four layers: a high level

description of functionality, a detailed description of design information, a list of

quality attributes, and finally the source code. One of the concepts behind the lay-

ered presentation is to show the component information at various levels of detail for

many similar components to allow comparison between the components. This is sim-

ilar to the way common electronic hardware is presented in a Transistor-Transistor

Logic (TTL) data book. The prototype is structured to allow the information to be

presented in this manner. When a list of components is found, the components can

73

be viewed and compared at any of the four levels of detail. The rest of this tutorial

explains how to accomplish this.

B.2.1.2 Graphical Interfacf The graphical interface consists of boxes

and windows that appear on the screen to provide information or request a response.

These boxes are called "dialog boxes". They can present any type of information,

but will always have at least two buttons, OK and Cancel, that are used to indicate

when the user is done interacting with the dialog box. OK indicates a normal end

to the dialog, while Cancel indicates that the user does not want anything described

in the dialog box to continue.

The mouse is the main interface to the prototype. Most interaction takes place

by responding to the dialog boxes using the dialog box buttons. They are responded

to by moving the cursor over the desired button by moving the mouse, and then

pressing, or "clicking", the left mouse button.

One item that may appear in a dialog box is a scrollable selection list. This

simply contains a list of items the user is able to select from. An item is selected

by moving the cursor over the desired item and clicking the left mouse button. The

right side of the scollable list will have a vertical bar with a triangular button at each

end. If the list contains more items than can be shown at one time, the bar, called

a slider, will be shorter than the rest of the list. Clicking the mouse button over

either triangular button will scroll the list from that direction to show the additional

items. The bar will also move to show the relative position of the list that is being

displayed.

B.2.1.3 On-line Help

1. To see what help is available, click the Help button on the right side of the

menu bar.

74

* An information dialog box will appear with descriptions of the menus and

commands is well as the definitions of the various layers of information

that are available for each component.

* Read through the definitions of the layers to see what information is

provided for each component.

2. Click on either OK or Cancel button on the dialog box when done reading the

hell) information to remove the box.

3. NOTE: The help screen is not available when another dialog box is on the

screen.

B.2.2 Finding and Viewing a Component This section describes the general

steps to find a component that performs a specific function and then to view the

information on the component.

1. The first step is to indicate what kind of component is desired. This is done

by specifying some search criteria. Click on the Search button on the menu

bar and choose New Search.

* A dialog box should appear to request the component's desired function,

the object on which the function acts, the medium in which the func-

tion executes, and the domain to which the function belongs. Only the

function is required to be selected.

2. Choose the keywords from the selection lists that describe the desired compo-

nent.

* Choose "Sort" from the function selection list. It should be highlighted

in the top of the function selection box.

* Leave the other criteria at their default: "(any)".

75

3. Click on the OK button on the dialog box.

* A new dialog box should appear showing the results of the library search

for the given criteria. It also has a selection box showing which informa-

tion layers can be viewed.

4. Next, select which component to view from the component selection list. Also

choose the layer to view. The functionality layer is the default.

* For the Sort example, choose "Bubble-Sort". Leave the default function-

ality" layer.

5. Click the Oh button on the dialog box.

* A new window will appear with the specific layer description for the se-

lected component.

6. Close the component information window when done by clicking the Done

button in the window.

* Close the Bubble-Sort function view.

B.2.3 Viewing Several Components This section describes how to view sev-

eral components for comparison.

1. To use the previous search, just click the View button on the menu bar to

get the dialog box with the results of the previous search. Then get a desired

component as described in steps 4-6 in Section B.2.2.

9 From the previous example, the sort functions should be displayed. Select

"Bubble-Sort" again, leave the default functionality layer and click on the

OK button.

76

2. Next minimize the displayed component window by clicking the close button in

the very upper left corner of the component information window. The window

icon should appear at the bottom of the screen.

3. Click the View menu button again and select another component to view.

"* Perform the steps to view the functionality layer description for the Heap-Sort.

Then minimize this window.

"* Finally click the View menu button again and bring up the functionality

layer for the Merge-Sort component.

4. To compare all selected components, double click on the minimized icons and

then move the windows around so that all of them can be viewed at once.

5. Press the Done button on the appropriate views when done viewing them.

e Press the Done button on all the components on the screen when done

viewing them.

B.2.4 Viewing the Design Layer The design layer has some additional fea-

tures that are explained in this section.

1. Get a search list that has the desired components to examine.

o Click the View button on the menu bar to bring up the last search list,

which should be the sort functions. The component selection dialog box

should appear.

2. Select a component and the design layer to view [see steps 4-6 in Section B.2.2

if necessary].

e Select the Bubble-Sort and Design layer and click OK. A window with

the Bubble-Sort design should appear.

77

3. The design layer can present the information various ways: graphically, tex-

tually or both. If both methods are available, the graphical method is shown

and an additional button is available in the upper right corner of the window

labelled "Text...".

* The Bubble-Sort design layer should have the Text... button. Click on it

to see the additional text.

4. When the text has been selected, the button changes to "Reemove Text" to

indicate how to get the graphical representation back.

* Click on it to get back to the graphical representation.

5. The design layers can be viewed simultaneously for comparison the same way

as the other information layers as discussed earlier.

"* Minimize the Bubble-Sort design window. Then get the current search

list back (press the View button.)

"* Select the Bubble-Sortl design for viewing and click OK.

"* This is the same function as the first Bubble-Sort component, just pre-

sented using a different method, called Plan Calculus.

6. When done viewing the design layers, they are closed by clicking on Done just

like the other layers.

e Close the BubbleSortl Design view, but leave the Bubble-Sort.

B.2.5 Viewing Other Component Information Layers This section specifies

how the other layers of information can be viewed.

78

1. Starting from a component view that is already displayed, any of the other

information layers can be viewed by pressing the appropriately labeled button

that are on the right side of the component information window.

"* The Bubble-Sort design layer should still be visible. Press the Implem.

button on the view to see the implementation layer (source code) for the

Bubble-Sort component. A text window should appear.

"* When done, the text window has to be closed like any normal window

(pressing the RIGHT mouse button while the cursor is on the title bar

and then selecting Quit).

"* Press the Quality button to see the view for the BubbleSort quality in-

formation.

"* Press the Done button on all remaining layers when done viewing them.

2. If no component is currently being viewed, click the View menu button to bring

up the component selection dialog box.

3. Select the desired component and then click on the desired information layer

for the component.

o Select the Quick-Sort Implementation layer.

4. Click the OK button to see the information.

5. Close the component windows when done viewing the information.

B.2.6 Narrowing the List of Components One problem that may occur is

that the initial list of components may be very long and may include components

that are not desired. This can be taken care of by revising the current search criteria

to narrow the list of matched components. This is accomplished in the following

way:

79

1. First get the current search criteria for revision. Click on the Search button

on the menu bar and select Revise Search.

A dialog box will appear showing the current search criteria.

2. Next, change or specify additional criteria for the desired component. This

may include the type of objects of the function, the medium of operation of

the function, or the application domain of the function.

9 For the sort example, select "integers" from the object. selection list and

"array" from the medium selection list.

3. Click on OK when the new criteria are as desired.

4. If the new list is stiril too long, try again.

"* Click on Cancel to end this list. Then go back to the Search menu and

select Revise Search again.

"* This time select "file" as the medium and click on OK.

5. When the list reaches a reasonable size, the components can be examined as

outlined previously.

* Simply click on Cancel now.

Now that you have completed the instruction manual and followed the exam-

ples, you may go back and examine the prototype using various combinations of

search criteria to see the various components that are currently available.

80

Appendix C. Example SUIT Figures

The following figures of the prototype interface show the main library functions

that can be performed and the resulting information presented to the user. The

figures are simple drawings, not screen captures, that have left some details out to

prevent the figures from becoming too cluttered. The omitted details include the

shading used to create the three dimensional effect of the windows and the highlights

to show which button is active. Each figure is accompanied by a short description of

what function was executed to generate the results shown. Refer back to Appendix

B for explanations of how the functions are executed.

81

Figure 22 shows what the prototype Reusable Software Library looks like when

it is first started.

Prototype Reusable Software Library Utility

VPrototyp

Figure 22. Main Prototype Window

82

Figure 23 shows the dialog box that is displayed when the user selects "New

Search" from the Search menu. This dialog queries the user for the search criteria

that will be used to find a desired component.

Prototype Reusable Software Library Utility

Perform this Function: on this Object: (optional)

compare (any)
count characters
create comments
search filessort integers

n this Medium: (optional) for this Domain: (optional)

(any) (any)
file accounting
list electronic warfare
program programming I

_ _ _ _ I _ __L

Figure 23. Search Criteria Selection Dialog

83

Figure 24 shows the dialog box that is displayed aftler a search has been com-

pleted. It shows what key words were used for the search and what components were

matched in the database. The user is then able to select a particular component and

information layer for viewing.

Prototype Reusable Software Library Utility

Functions which meet the criteria:
sort; (any); (any); (any);

Select Component to View Select component Layer

C0 Functionality

bubble-sort 0 Design

heap-sort 0 Qoably

quicksort 0 Implementation

merge-sort

Figure 24. Search Results/Component Selection Dialog

84

Figure 25 shows the dialog box that is displayed when the user selects "Revise

Search" from the Sfarch menu. This dialog allows the usr to alter the previous

search criteria used to find components.

Prototype Reusable Software Library Utility

E Reusabl

Previous Function selected: Previous Object: (optional)

sort A (any)

compare f (any)
count characters
create comments
search files

sort integers
IIV IV

Previous Medium: (optional) Previous Domain: (optional)

(any) (any)

(anyl (any)
fiye accounting
list electronic warfare
program programming

Figure 25. Revise Previous Search Criteria Dialog

85

Figure 26 shows the window that is presented after the user chooses the func-

tionality layer of a component. to view. An example component is shown.

Prototype Reusable Software Library Utility

draw

Compare Strings Function

Function: IS MATCH Date: 30Mar88

Author: Rich• rd Conn

Abstract: Is-Match checks two strings for
equivalence, returning TRUE if the strings are

the same length and contain the same characters
in the same sequence.

Keywords: Compare; Strings;

Properties: case insensitive;

Inputs: Strinji : String2;

Outputs: Result: Boolean:

Figure 26. Software Compontat Functionality Representation

86

Figure 27 shows the window that is presented after the user chooses the design

layer of a component to view. An example component. is shown using the PDL design

representation. The button in the upper right corner that says "Text..." indicates

that a text description is also available.

Prototype Reusable Softvare Library Utility

draw

Compare Strings Design

function ToUpper(Char)
IF Char is not letterreturn Char;
ELSE

return uppercase of Char;
ENDIF;

END TojUpper

function lsMatch(Stringl. String2)
IF the length of Stringl - length of String2-

DO for char in the strings
IF ToUpper(charl) not - TOUpper(char2)

return FALSE and quit;
ENDO.
return TRUE if loop completed;

ELSE
return FALSE;

ENDIF;
END Is-Match;

Figure 27. Software Component Design Representation (PDL)

87

Figure 28 shows the how the design layer representation changes after the user

pressed the "Text..." button in the upper right corner to view the associated text

description.

Prototype Reusable Software Library Utility

draw

Compare Strings Design Re

Function: ISMATCH
Authr:. Richard Conn

Description: The function first checks to see if
the strings are the same length. If not, it returns

false. Otherwise it loops through the strings and fjj l
converts each char to uppercase and compares then

Testing: test program AMTEST included.

Called by: anyone;

Calls: To-Upper (internal)
Depends on: none;

Environment: SUN 3/260, Verdix VADS 5.41

Modifications: none;

Development Methodology: unknown;

Design Altntives: unknown;

Design Rationale: unknown;

Figure 28. Software Component Design Representation (Text)

88

Figure 29 shows the t.ype of information that is displayed when the user selects

the Help but ton.

Prototype Reusable Software Library Utility

The following information may be of some help.

Menus:
Fite: This menu provides some file functions, such as saving a

search criteria to file. loading a previously saved search, and exiting
Search: This menu allows you to specify a new search criteria

or revise previously selected search criteria.

View: This function allows you to view a component from a

set found for a previous search.
Utilities: This menu provides some component utilities to print

a selected source file or save it to disk.

System: This menu provides functions to add and delete
components from the library. A password is required.
Definitions:

Funtionalirr L.•er: This layer presents or describes WHAT the

component does.
Design Layer: This layer presents or describes HOW the

component does what it does.

Attribute Layer: This layer presents or describes various
quality attributes of the component, such as reliablity. etc.

Implementation Layer: This layer contains the source code.

Figure 29. Help Information

89

Appendix D. Questionnaire

The following questionnaire was provided to the prototype evaluators to get

feedback on the strengths and weaknesses of the layered approach concept and the

representations selected from the evaluation.

90

Demonstration Questionnaire

I. Background questions:
Answer the following questions, circling the appropriate answer.

1. How much software development experience have you had?
none 0-3 yrs 4-6 yrs 7-10 yrs 11 yrs +

2. How many lines of software code have you written as part of a commercial or
government project?

none < 1K 1K-1OK lIK-50K 51K-IOOK 101K +

3. How many lines of software code have you written specifically for reuse?
none < 1K 1K-1OK llK-50K 51K-100K 101K +

4. How many lines of reusable software code have you included in any software
development efforts?

none < 1K 1K-10K 11K-50K 51K-1OOK 101K +

5. How much time have you spent in the last year looking in software libraries or
collections for reusable software?

none 1-4 hrs 5-10 hrs 11-20 hrs 21-50 hrs+ 51 hrs+

6. What software engineering education/training have you had (check all that
apply)?

-- on-the-job training

n college courses

-l college degree

EL graduate courses

L graduate degree

Li professional continuing education

91

II. Functionality Layer
The following set of statements are all related to the component. functionality de-
scriptions presented by the prototype. Browse through the prototype library and
examine the component functionality descriptions. Then write the number that in-
dicates how much you agree with the following statements on the line provided using
the following scale:

strongly somewhat borderline somewhat strongly
disagree disagree agree agree

1 2 3 4 5

1. _ _ The component functionality representation is independent of spe-
cific programming languages.

2. - The representation is independent of specific development method-
ologies.

3. The representation is independent of specific applications.

4. _ The representation specifies what the component does.

5. The representation specifies non-functional requirements.

6. The representation is understandable.

7. The representation is unambiguous.

8. The representation distinguishes between similar items.

9. What type of training or education would be required to understand the com-
ponent functionality representations? (Circle the appropriate answer)

(a) High school classes.

(b) College classes in software development or software engineering.

(c) A college degree in software engineering

(d) General work experience in software development.

(e) Specific training for this particular representation.

(f) Other:

92

10. What additional information would make the description of the function more
complete. miderstandable, or better able to distinguish between components?

III. Program Design Language
The following set of statements are directed at the designs represented using the
Programming Design Language (PDL), without considering the associated text de-
scription of the design. Browze through the prototype library and examine the PDL
design representations. Then write the number of the response that. indicates how
much you agree with each of the following statements on the line provided using this
scale:

strongly somewhat borderline somewhat strongly
ddisagree isagree agree agree

1 2 3 4 5

11. - The PDL design representation is independent of specific program-
ming languages.

12. - The representation is independent of specific development method-
ologies.

13. The representation is independent of specific applications.

14. The representation is understandable.

15. The representation is unambiguous.

16. The representation distinguishcs between similar items.

17. The representation specifies the architectural design.

18. The representation specifies system dependancies.

19. The representation specifies design alternatives.

20. The representation specifies design rationale.

21. The representation specifies the design methodology used for devel-
opment.

93

22. What type of training or education would be required to understand the PDL
design representations? (Circle the appropriate answer)

(a) High school classes.

(b) College classes in software development or software engineering.

(c) A college degree in software engineering

(d) General work experience in software development.

(e) Specific training for this particular representation.

(f) Other:

Now consider the text descriptions that are included with the PDL design informa-
tion and respond to the following statements using the scale:

strongly somewhat borderline somewhat strongly
disagree disagree agree agree

1 2 3 4 5

23. - The text description is necessary to understand the component.

24. The text is necessary to distinguish between similar components.

25. The text is necessary to represent the architectural design.

26. _ The text is necessary to represent the system dependancies.

27. The text is necessary to represent the design alternatives.

28. The text is necessary to represent the design rationale.

29. The text is necessary to represent the design methodology.

30. List any other comments about the PDL design representations:

94

W. Plan Calculus

The following set of statements are specifically related to the designs repre-
sented using the Plan Calculus, without considering the associated text description
of the design. Browse through the prototype library and examine the Plan Calculus
design represenations. Then write the number of the response that indicates how
much you agree with each of the following statements on the line provided using the
scale:

strongly somewhat borderline somewhat strongly
disagree disagree agree agree

2 3 4 5

31. The Plan Calculus design representation is independent of specific
programming languages.

32. - The representation is independent of specific development method-
ologies.

33. The representation is independent of specific applications.

34. The representation is understandable.

35. The representation is unambiguous.

36. The representation distinguishes between similar items.

37. The representation specifies the architectural dcsiga.

38. The representation specifies system dependancies.

39. The representation specifies design alternatives.

40. The representation specifies design rationale for the decisions made.

41. The representation specifies the design methodology used for devel-
opment.

95

42. What type of training or education would be required to understand the Plan
Calculus design representations? (Circle the appropriate answer)

(a) High school classes.

(b) College classes in software development or software engineering.

(c) A college degree in software engineering

(d) General work experience in software development.

(e) Specific training for this particular representation.

(f) Other:

Now consider the text descriptions that were included with the Plan Calculus design
information and respond to the following statements using tile scale:

strongly somewhat borderline somewhat strongly
disagree disagree agree agrec

1 2 3 4 5

43. The text description is necessary to understand the component.

44. The text is necessary to distinguish between similar components.

4.5. The text is necessary to represent the architectural design.

46. The text is necessary to represent the system dependancies.

47. The text is necessary to represent the design alternatives.

48. The text is necessary to represent the design rationale.

49. The text is necessary to represent the design methodology.

50. List any other comments about the Plan Calculus design representations:

96

51. What additional information would make the design descriptions more conm-
plete, understandable, or better able to distinguish between coi)ponents.'

52. \What other comments do you have about the design layer t hat have not beeil
addressed in this survey?

V. Prototype Questions
\\Vrite ini the number of the response that indicates how much you agree with the
given statements on the line provided using the following scale:

st rongly somewhat borderline somewhat strongly
disagree disagree agree agree

12 3 4 5

5:3. Presenting the components in layers is helpful for understanding.

54. Presenting the components in layers is helpful for comparing compo-
nents.

55. The four layers cover component information wvell.

56. The interface is easy to use.

57. The menus are arranged in a logical manner.

58. What other comments do you have about the prototype that have not been
addressed in this survey?

97

Appendix E. Prototype Questionnaire Responses

E.I Background Qu4stion.

Question/ Respondent
Choiceso 1 2 3 4 5 6 7

Ques. 1: Software development experience

none X

0-3 %,-s X X X X
•1-6 yrs

7-10 vrs X
I INrs+ X

Qiies. 2: SLOG written

nonle X X X

< IK
IK-10E X X

11K-501 X X
51 K- 1OOK

1011K +-
Ques. 3: Reusable SLOC written

none X X
< 1K X X

iK- 101K X X X
11K-50K

51K-1001K
101K +

Ques. 4: Reusable SLOC used
none X X X

<1IK X X
1K-10K X X

I IK-50K
51K-1OOK

101K +-
Ques. 5: Time browsing reusable libraries

none X
1-4 hrs X X X X

5-10 hrs X X
11-20 hrs
21-50 hrs
51 hrs +

98

E.2 Prototype Questions

Question Respondent
No. 1 2 3 4 5 6 7 Avg Std Dev

Functionality Layer
1 4 5 5 .5 5 5 5 4.86 0.3499
2 4 5 5 5 5 5 5 4.86 0.3499
3 5 4 5 5 5 5 5 4.86 0.3499

4 4 5 5 4 4 5 4 4.43 0.4949

5 3 3 5 5 2 5 3.83 1.2134

6 5 5 5 4 5 5 5 4.86 0.3499
7 5 4 3 4 5 4 5 4.29 0.6999
8 5 2 1 3 4 4 5 3.43 1.3997
9 b d b d d b b n/a n/a

PDL Design without Text
11 4 4 4 5 4 5 4 4.29 0.4518

12 4 4 4 5 5 5 5 4.57 0.4949
13 5 5 4 5 5 4 5 4.71 0.4518
14 4 5 5 4 5 5 5 4.71 0.4518
15 4 3 5 4 5 4 5 4.29 0.6999
16 5 4 5 5 5 4 5 4.71 0.4518
17 4 3 4 5 5 5 5 4.43 0.7284

18 4 2 4 1 3 1 4 2.71 1.2778
19 2 2 4 1 2 1 5 2.43 1.3997
20 3 1 4 1 2 1 5 2.43 1.4983
21 3 2 4 2 3 1 5 2.86 1.2454
22 d d b d d a b n/a n/a

PDL Design with Text
23 3 3 3 4 4 4 4 3.57 0.4949
24 3 2 2 5 5 5 3 3.57 1.2936
25 3 1 3 2 2 1 2 2.00 0.7559
26 4 2 3 5 5 5 5 4.14 1.1249
27 4 2 4 5 5 2 4 3.71 1.1606
28 4 4 4 5 5 4 5 4.43 0.4949
29 4 2 4 4 4 4 5 3.86 0.8330

99

Question Respondent
No. 1 2 3 4 5 6 7 Avg Std Dev

Plan Calculus Design without Text
31 4 5 4 5 .5 5 5 4.71 0.4518
32 4 5 4 5 4 4 5 4.43 0.4949
33 5 5 4 5 5 4 5 4.71 0.4518

34 2 2 3 3 2 1 3 2.29 0.6999
35 4 4 4 2 1 4 3.17 1.2134
36 3 2 4 4 2 5 5 3.57 1.1780
37 3 3 4 4 3 4 4 3.57 0.4949
38 3 1 3 1 1 1 5 2.14 1.4569
39 3 3 3 1 1 1 5 2.43 1.3997
40 3 1 3 1 1 1 5 2.14 1.4569
41 4 2 3 1 2 1 5 2.57 1.3997
42 e e b e e e e n/a n/a

Plan Calculus Design with Text
43 5 5 4 5 5 5 3 4.57 0.7284
44 4 4 3 4 4 3 4 3.71 0.4518

45 4 2 3 3 3 3 3 3.00 0.5345
46 4 4 4 5 5 5 5 4.57 0.4949
47 4 4 3 5 5 2 2 3.57 1.1780
48 4 3 3 5 5 4 5 4.14 0.8330
49 4 2 3 4 3 4 5 3.57 0.9035

Prototype Questions
53 5 5 5 5 5 5 5 5.00 0.0000
54 5 5 5 4 5 5 5 4.86 0.3499
55 4 4 5 4 5 5 5 4.57 0.4949

56 5 5 5 5 5 5 5 5.00 0.0000

57 5 5 5 5 5 5 5 5.00 0.0000

NOTE: The following questions were not answered by the indicated respon-
dents. The missing values did not affect the calculations for the average and standard
deviation for each question.

Question Respondent
5 4

35 2

100

Bibliography

1. Arango, Guillermo and others. "A Tool Shell for Tracking Design Decisions,"
IEEE Software, 8:75-83 (March 1991).

"2. Arango, Guillermo and Ruben Prieto-Diaz. "Domain Analysis Concepts and
Research Directions." Domain Analysis and Software Systems Modeling edited
by Ruben Prieto-Diaz and Guillermo Arango, Los Alamitos CA: IEEE Com-
puter Society Press, 1991.

3. Biggerstaff, Ted and Charles Richter. "Reusability Framework, Assessment,
and Directions," IEEE Software, 4:3-11 (March 1987).

1. Booch. Grady. Software Components with Ada. Menlo Park CA: Ben-
jamin/Cummings Publishing Co., 1987.

5. Bowen, Thomas P. and others. Specification of Software Quality Attributes.
Final Technical Report RADC-TR-85-37, Vol. 1, Griffiss AFB NY: Rome Air
Development Center, February 1985 (AD-A153 988).

6. Brooks, Fred P. "No Silver Bullet: Essence and Accidents of Software Engi-
neering," IEEE Computer, 20:10-19 (April 1987).

7. Burton. Bruce A. and others. "The Reusable Software Library," IEEE Software,
4:25-33 (July 1987).

8. Caine, Stephen H. and E. Kent Gordon. "PDL - A Tool for Software Design."
Tutorial on Software Design Techniques, 4th Ed. edited by Peter Freeman and
Anthony I. Wasserman, Los Alamitos CA: IEEE Computer Society Press, 1983.

9. Caldiera, Gianluiga and Victor R. Basili. "Identifying and Qualifying Reusable
Software Components," Computer, 24:61-70 (February 1991).

10. Cardow, Capt James and Capt William Watson. Class handout distributed in
WCSE 474, Software Generation and Maintenance; Library Management and
Construction section. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, 1991.

11. Cardow, Capt James, Instructor, WSCE 474, Software Generation and Mainte-
nance. Personal interviews. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, 30 March through 13 September 1992.

12. Comer, Edward R. "Domain Analysis: A Systems Approach to Software
Reuse." 9th Digital Avionics Systems Conference. 224-229. Piscataway NJ:
IEEE Service Center, 1990.

13. Conklin, Jeff. "Hypertext: An Introduction and Survey," IEEE Computer,
20:17-40 (September 1987).

101

14. Conklin, Jeff. "Design Rationale and Maintainability." Proceedings of the 22th
Hawaii International Conference on System Sciences, Vol. 2. 533-539. North
Hollywood CA: Western Periodicals Co., 1989.

15. Devanbu, Premkumar and others. "LaSSIE, a Knowledge-based Software In-
formation System," Communications of the ACM, 34:34-49 (May 1991).

16. Dubois, Eric and others. "A knowledge Representation Language for Require-
ments Engineering." Proceedings of the IEEE. 1431-1443. Piscataway NJ:
IEEE Service Center, 1986.

17. Frakes, W. B. and P. B. Gandel. "Representation Methods for Software Reuse."
Tri-Ada 89 Proceedings. 302-314. New York: ACM Press, 1989.

18. Frakes, W. B. and P.B. Gandel. "Classification, Storage, and Retrieval of
Reusable Components." Proceedings of 12th International A CISIGIR Confer-
ence on Research and Development in Information Retrieval. 251-254. New
York: ACM Press, 1989.

19. Frakes, W. B. and B. A. Nejmeh. "An Information System for Software Reuse."
IEEE Tutorial on Software Reuse: Emerging Technology edited by W. Tracz,
Los Alamitos CA: IEEE Computer Society, 1988.

20. Franke, David W. "Deriving and Using Descriptions of Purpose," IEEE Expert,
6:41-47 (April 1991).

21. Cane, C. P. "Data Design in Structured Systems Analysis." Tutorial on Soft-
ware Design Techniques, 4th Ed. edited by Peter Freeman and Anthony I.
Wasserman, Los Alamitos CA: IEEE Computer Society Press, 1983.

22. Ince, Darrel. "Z and System Specification," Information and Software Technol-
ogy, 30:138-145 (April 1988).

23. Jordan, Kathleen A. and Alan M. Davis. "Requirements Engineering Meta-
model: An Integrated View of Requirements." IEEE 15th Annual International
Computer Software and Applications Conference (COMPSA C91). 472-478. Los
Alamitos CA: IEEE Computer Society Press, 1991.

24. Karat, John. "Software Evaluation Methodologies." Handbook of Human-
Computer Interaction edited by Martin Helander, New York: Elsevier Science
Publishing Co., Inc., 1988.

25. Lubars, Mitchell D. "Domain Analysis and Domain Engineering in IDeA."
Domain Analysis and Software Systems Modeling edited by Ruben Prieto-Diaz
and Guillermo Arango, Los Alamitos CA: IEEE Computer Society Press, 1991.

26. Lubars, Mitchell D. and Mehdi T. Harandi. "Addressing Software Reuse
Through Knowledge-Based Design." Software Reusability, Vol. 11: Applications
and Experience edited by Ted J. Biggerstaff and Alan J. Perlis, New York: ACM
Press, 1989.

102

27. Matsumoto, Yoshihiro. "Some Experiences in Promoting Reusable Soft ware:
Presentation in Higher Abstract Levels." Software Reusability, V'ol. 11: Applica-
tions and Expericnce edited by Ted J. Biggerstaff and Alan J. Perlis. New York:
ACM Press, 1989.

28. McCall, Jim A. and others. Factors in Software Quality: Concept and D~f-
initions of Softuwarf Quality. Final Technical Report RADC-TR-77-369. Vol.
1, Griffiss AFB NY: Rome Air Development Center, November 1977 (AD-A0-t
9014).

29. Oman, Paul and Jack Hagemeister. Metrics for Assessing a Softwt.re System ls
Maintainability. Report 92-01-TR, University of Idaho: Software Engineering
Test Lab, March 1992.

30. Prieto-Diaz, Ruben. "Implementing Faceted Classification for Software Reuse."

Communications of the ACM, 34:89-97 (May 1991).

31. Prieto-Diaz, Ruben and Peter Freeman. "Classifying Software for Reusabilitv."
IEEE Software, 4:6-16 (January 1987).

32. Privitera, Dr. J. P. "Ada Design Language for the Structured Design Methodol-
ogy." Tutorial on Software Design Techniques, 4th Ed. edited by Peter Freeman
and Anthony 1. Wasserman, Los Alamitos CA: IEEE Computer Society Press.
1983.

33. Rich, Charles. "A Formal Representation for Plans in the Programmer's Ap-
prentice." Proceedings of the 7th International Joint Conference on Artificial
Intelligence. 1044-1052. Los Altos CA: International Joint Conference on Ar-
tificial Intelligence, 1981.

34. Rich, Charles and Richard C. Waters. "Formalizing Reusable Software Comnpo-
nents in the Programmer's Apprentice." Software Reusability, Vol. II: Applica-
tions and Experience edited by Ted J. Biggerstaff and Alan J. Perlis, New York:
ACM Press, 1989.

35. Webster, Dallas E. Mapping the Design Information Terrain. Technical Report
STP-367-88, Austin TX: Microelectronics and Computer Technology Corpora-
tion, November 1988.

36. Worrall, Capt Gary G. A Hypermedia Implementation for Reusable Software
Component Representation. MS thesis, AFIT/GCS/ENG/90D-16, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, December 1990 (AD-A230497).

37. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs NJ: Yourdon
Press, 1989.

103

Vita

Captain Paul D. Siebels was born on IS April 1965 in Newton, Iowa. He

graduated as Valedictorian from Newton Senior High School in 1983. He attended

Rose-Hulman Institute of Technology in Terre Haute. Indiana with an Air Force

ROTC scholarship. He graduated magna cum laude with a Bachelor of Science

degree in Electrical Engineering in May 1987 and received a reserve commission in

the US Air Force. His first assignment was to Wright-Patterson AFB, Ohio as an

Avionics Systems Engineer for the Deputy of Engineering, Aeronautical Systems

Division, Air Force Systems Command. He managed and recommended technical

improvements for the computer software for the YA-7F and C-29A programs. In

February 1989 he was assigned to the Joint Tactical Autonomous Weapons (JTAW)

System Program Office (SPO) as a Computer Resource Engineer. He managed the

technical development of the Mission Computer hardware and software for the Tacit

Rainbow program until entering the School of Engineering, Air Force Institute of

Technology, in May 1991.

Permanent address: 71 Hidden Cove Lane
Valparaiso, Florida 32580

104

j Form Approved
REPORT DOCUMENTATION PAGE OMB No. o704-0o88

|P Jo 'I 'Fo: "' •==- ° " ."• s - .,'? *- of ,nfofm aw ' *s estim ated ,c 4.erage 1 , ur Per es <oorse. ncfuding tre tim e for re-e ,ng insttrJctic's, searwc- ; ex s! : za. so. r~es.
. e :L, 'eecied, anro civoittins ar'c ~e,,. ,n9 trrg e z:'et,cr, of inc-at~oI SendO (ommnrn lts reto-gal Msr burderr es -ate or 3nr. "Irlel asoe:t of "his~~~rz II! .d ;Must ~ for redu~img*,hi ouri6 O nr c~ Ao~ a5I'ngion ýeadowarte's Ser.ices. Cirecr.orate fo- nfo-Talior' O0eations anrO Re,-CTs, 1215 efferson

Cr4. le. '3tz ,± L~Ot 22202-4302. anld ic the 0-~ s! %.1 gem'ert and buoge!, Paper~of* Reductron Project(07C4.0'89). Aasrmrngtorn DC 20SC3

" 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Dec 92 IMaster's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Examining a Layered Approach to Function and Design
Representation for Reusable Software Components

6. AUTHOR(S)

Paul D. Siebels, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Air Force Institute of Technology, REPORT NUMBER

WPAFB, OH 45433-6583 AFIT/GCE/ENG/92D-11

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Software Technology for Adaptable, Reliable Systems (STARS) AGENCY REPORT NUMBER

Suite 400 801 N. Randolph Street
Arlington VA 22203

11. SUPPLEMENTARY NOTES

12a. D•s'rI••J'7ON AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. AFIS•kA(T !Vm.im200 words) This effort examined ways to improve the effectiveness of

reusable software libraries. The main area of investigation was in improving the
user interface by finding better ways to present the software components to poten-

i tial re-users. The first aspect which was considered was finding an effective
irepresentation for reusable software components. A set of criteria was developed
for evaluating the effectiveness of software representations. The criteria consisted

,of generality, expressiveness, understandability, consistency, and resolution. The
second aspect which was considered was how to present the software component infor-
mation to the user to facilitate finding the appropriate component for reuse. A
representation framework was examined which advocated presenting reuse information

,in four layers: component functionality, design information, quality metrics, and
source code. Several current representations for software function and design were
evaluated using the criteria listed above. The highest rated representations were

Ithen incorporated into a prototype library interface for examination by a group
of software engineers. Feedback was collected and summarized in a set of recomen-

Idations and conclusions.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software reuse; Computer programs; Libraries; Reusable equip- 114
ment; Software engineering; Information retrieval; 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassifiel Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Sid Z39-16

298-102

